3D封装材料技术
轻了重量。与传统封装相比,使用3D技术可缩短尺寸、减轻重量达40-50倍;
在速度方面,3D技术节约的功率可使3D元件以每秒更快的转换速度运转而不增加能耗,寄生性电容和电感得以降低;
3D封装更有效的利用了硅片的有效区域,与2D封装技术相比,3D技术的硅片效率超过100%;
在芯片中,噪声幅度和频率主要受封装和互连的限制,3D技术在降低噪声中起着缩短互连长度的作用,因而也降低了互连伴随的寄生性。
电路密度的提高意味着提高功率密度。采用3D技术制造元器件可提高功率密度,但必须考虑热处理问题。一般需要在两个层次进行热处理,第一是系统设计,即将热能均匀的分布在3D元器件表面;第二是采用诸如金刚石低热阻基板,或采用强制冷风、冷却液来降低3D元器件的温度。为了持续提高电路密度、性能和降低成本,芯片尺寸不断缩小,意味着设计复杂度的提高。然而,3D技术目前只完成了少量复杂的系统及元器件,因此还要改进设计以解决系统复杂度不断增加的问题。
任何一种新技术的出现,其使用都存在着预期高成本的问题,3D技术也不例外。影响叠层成本的因素有:叠层高度及复杂性;每层的加工步骤数目;叠层前在每块芯片上采用的测试方法;硅片后处理等等。
3D封装改善了芯片的许多性能,如尺寸、重量、速度、产量及耗能。当前,3D封装的发展有质量、电特性、机械性能、热特性、封装成本、生产时间等的限制,并且在许多情况下,这些因素是相互关联的。3D封装开发如何完成、什么时候完成?大多数IC专家认为可能会经历以下几个阶段。具有TSV和导电浆料的快闪存储器晶圆叠层很可能会发展,随后会有表面凸点间距小至5μm的IC表面-表面键合出现。最后,硅上系统将会发展到存储器、图形和其它IC将与微处理器芯片相键合。
- 3D封装材料技术及其优点简介(09-15)
- 3D封装材料技术及其优点(01-06)
- 新材料对测量技术的挑战(05-24)
- 汽车用非金属材料检测技术 (10-14)
- 三坐标测量机常见的结构材料有哪些(02-27)
- RF 至位解决方案可为材料分析应用提供精密的相位和幅度数(02-06)