高精度太阳能聚光双轴定时跟踪控制系统设计
需要说明的是,系统初始化模块在整个系统的设计过程中是非常重要的。它主要完成两个功能:系统的资源配置和平台框架基准位置的搜索。确定平台框架的基准位置是十分必要的。在系统运行过程中,偶尔的掉电是可能的。系统再加电时会因无法确定当前平台框架的位置,而产生严重的错误;另外,日落后系统需要按原路线返回至基准位置,以避免电缆的缠绕和减小因平台框架的加工精度而产生的误差累积,这也要求系统必须有一个可以确定的基准位置。
2.2 系统软件设计
全自动太阳跟踪器具有两种可自行切换的跟踪方式:传感器跟踪方式和太阳运行轨迹跟踪方式。传感器跟踪方式是通过光电转换器实时采样,计算机分析比较太阳光强的变化,从而驱动机械机构实现太阳跟踪的方式。太阳运行轨迹跟踪方式是根据当地的地理位置和时间来确定太阳的位置进行跟踪太阳。在本系统里,这两种方式自行切换,互相配合,实现了高精度的全天候太阳的自动跟踪。
3 设计应用与结果分析
太阳能聚光双轴定时跟踪控制系统的现场运行为:测试时间为2010年12年某日,地点在我国南方某市。经过现场安装调试和多次重复测试,测试结果如表1所示。当天气晴好时,跟踪控制系统可以跟踪太阳轨迹。从实验结果分析可行,此全自动跟踪控制系统精确度和稳定性能够很好地满足野外现场高精度对太阳轨迹跟踪的实际。但是,对于控制系统的全方面测试和防雨水、防风、防雷击等等的试验任务,还需要进一步的开展研究。
文中在考虑太阳的运动轨迹模型的基础上,进行了基于单片机C8051F020的高精度双轴全自动太阳能聚光跟踪控制系统软硬件设计,不仅可以实现大范围高精度的跟踪太阳轨迹,而且即便遇到多云天气跟踪系统也能安全可靠的运行,提高了太阳能光电转换的效率。现场安装调试和多次重复测量的结果表明本文采用方法正确,可靠。同时,对于控制系统的全方面测试,目前已经论证充分且经过实验室试验,正在进一步的开展现场应用研究过程中。
- 基于ATT7022B高精度智能电表的设计(03-25)
- 基于DDS的高精度任意波形发生器设计(08-26)
- 一种用于高精度ADC片上测试的信号发生器(01-18)
- 一种高精度、低成本的电容的测量方法(03-24)
- 基于ADS1259的高精度采集系统设计(01-09)
- 如何测量高精度直流电压(03-23)