微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹25闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣濞嗗繒浠鹃梺绋款儍閸婃繈寮婚弴鐔虹鐟滃秹宕锔藉€跺┑鐘叉处閳锋垿鏌熺粙鎸庢崳缂佺姵鎸婚妵鍕晜鐠囪尙浠紓渚囧枛椤兘銆佸☉銏″€烽悗鐢登瑰鎶芥⒒娴h櫣甯涙繛鍙夌墵瀹曟劙宕烽娑樹壕婵ḿ鍋撶€氾拷
首页 > 射频和无线通信 > 射频无线通信文库 > 勿在测试过程中损坏纤薄器件

勿在测试过程中损坏纤薄器件

时间:05-29 来源:RF技术社区 点击:

每个人都想有轻薄的移动设备,这也是新发布的iPhone 6比前几代产品更薄的原因。更薄的设备要求人们开发出更先进的封装技术。遗憾的是,传统的环氧塑料封装不足以构建这些特别薄的设备,因为其封装占位面积比其内部容纳的芯片要大近6倍。

这个问题可采用芯片级封装(CSP)解决,即封装与芯片本身大小相同。CSP封装利用焊球直接附着到电路板上。遗憾的是,小尺寸的CSP封装使得它们非常脆弱,在操作过程中很容易损坏。因此,半导体制造行业需要有新的方法来检验器件的质量,以便工程师理解故障,并且筛选掉故障器件。

薄在内部

苹果的iPhone 6厚度是6.9mm,小于iPhone 5的7.6mm和iPhone 4S的9.3mm。因为电池和屏幕无法做得更薄,所以必须降低封装和基板的厚度。这也正是转移到CSP的驱动力。

市场调查公司Prismark 的Brandon Prior 指出,iPhone 5S是第一款在0.4mm间距上使用50μm线宽/线间距(L/S)和CSP的移动设备。据Prismark预测,到2018年有超过28%的CSP和WLCSP(晶圆级CSP)将达到0.4mm或以下。

Qualcomm公司封装工程高级总监Steve Bezuk在2014年"IMAPS器件封装大会"上对封装挑战进行了阐述。他认为,虽然21世纪初期很少有封装采用WLP,但这类封装如今在IC封装市场已占近一半份额。

CSP 基板做得越来越薄。SEMI 全球行业协会表示, 目前最前沿的CSP 基板采用15 μm 的线宽和线间距,而且正在向更小的线宽与间距发展, 因此它们可以处理≤ 110 μm 的精细凸点间距。SEMI 在其题为《Global Semiconductor Pack aging MaterialsOutlook 2013~2014》的报告中指出,基板制造商的2015年目标是5μm的线宽与线间距。他们还考虑在积层中使用40μm的过孔直径。报告透露,所制造的核心层上的线宽与线间距为12μm,过孔最小为50μm,捕捉焊盘小至110μm。

上述情况和相关趋势使得操作CSP的难度越来越大,在生产质量认证之前和过程中它们也更加容易损坏。一般来说,任何CSP可靠性认证过程都必须解决操作、来料和出货质量控制(IQC/OQC)、插接和无偏置应力测试4个关键问题。

CSP暴露的硅材料是未经加工的,非常易碎,因此在操作期间很容易因应力裂缝而损坏。这种裂缝可能会形成不合格的硅片矩阵,并在认证过程中由于额外应力造成裂缝的扩大。这些因素加上其他不可知因素使得人们很难区分是认证有关的应力测试引起的CSP故障还是操作引起的CSP故障。在大批量生产移动设备时这个问题变得更具挑战性。

在来料和出货质量控制过程中定位裂缝的过程是很困难的,实现自动化的成本也很高。因此必须由经过适当培训的技术人员通过目视检查来完成。如何度量也是个问题,通常要求定制的规范指标来优化筛选指定器件的效率。

无偏置应力测试在室内进行,包括预调节湿度敏感性、回流焊、高温存储(HTS)、温度循环测试(TMCL)和高加速度应力测试(HAST)(图1)。这些测试对于非CSP来说相对简单,因为它们体积比较大,重量比较重,不容易碎。然而,如果CSP用相同的工艺,很容易造成器件损坏。解决这个问题要求在这些无偏置应力测试过程中选择保护CSP的解决方案,包括使用载体和其他定制夹具,并提供有关如何使用它们的培训。

CSP闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

图1:温度循环和高度加速应力测试需要在室内创造测试条件。

器件不仅必须通过无偏置应力测试,还必须通过有偏置测试,包括器件在加电和工作时的有偏置应力测试和有偏置可靠性认证测试。有偏置测试包括高温工作寿命(HTOL)、高温循环、早期失效率(EFR)和老化。在有偏置测试期间,器件通过放入一个插座中与电路板建立电气连接,而不是将器件直接焊接到电路板上。这时要求使用插座,或在某些情况下专门设计的子板。测试范围从高温工作寿命测试到有偏置的其他测试,十分广泛。这种方法可以确保在测试完成后方便地移除器件。但是,器件出入插座时要求不损坏器件也极具挑战性。

应对这些挑战的解决方案是组合使用专门的工艺、载体和其他定制夹具,用它们代替插座和子板(需要的话),然后是覆盖认证过程各个方面的操作人员培训。

在开发专门的工艺时,应该实现100%的全方位目视检查。这种检查可以在开始应力测试之前筛选出损坏的器件。可以开发定制的全方位检查规范,把重点放在如何测量尺寸以优化筛选效率上。任何被忽略的器件都可能使整批产品失效,因此关键是在施加应力之前对器件进行筛选,以便使用有效的样本数量。

为了开展有偏置的应力测试,应该在插座和越来越多专门设计的子板之间作出正确选择,这要求在用插座和子板方法设计老化和HTOL/HAST电路板方面拥有丰富的经验。对于器件不需要加电的无偏置应力测试,通常需要使用被称为载体的定制夹具。

EAG公司在应力测试中使用了多种载体材料和结构用于保护CSP,包括带盖子的小篮或覆盖器件的"大礼帽",以便CSP不会被碰到、吹翻而受到影响和损坏(图2)。材料对于保护CSP来说非常重要,因为载体也暴露在极端的环境条件下。另外,载体必须足够大,以便CSP在插入或拔出时不会受损,但也不能太大,否则在里面因容易到处移动而破裂。每块载体可以容纳多达240个器件,对器件来说是唯一的,并且是针对合适尺寸的CSP进行了定制设计。

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top