微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于AVR微控制器的蓄电池充放电控制器

基于AVR微控制器的蓄电池充放电控制器

时间:10-24 来源:电子产品世界 点击:

摘要:针对539CH-1型Ni-Cd电池,提出一种基于AVR微控制器的蓄电池充、放电控制器。该控制器以Mega16L为核心,根据上位机的命令控制蓄电池的充、放电电流值以及放电电阻的接入时机。

关键词:蓄电池;AVR微控制器;TLV5638;电源控制

引言

蓄电池是飞行器电源系统中重要的组成部分,蓄电池的性能直接影响飞行器的安全。因此,正确维护、保养蓄电池就成为一项十分重要的工作。539CH-1型Ni-Cd蓄电池是法国SAFT公司生产的碱性蓄电池,该电池包含20个单体电池,额定电压24V,额定容量53Ah。波音737客机即采用该型蓄电池。

充电和放电是该电池维护、保养中的主要工作。由于该电池为Ni-Cd蓄电池,为了避免记忆效应影响电池容量,充电前需要对电池进行放电。该电池的放电规范要求测量单体电池电压,并记录单体电池电压下降到1V时的放电时间,然后在单体电池两极间接入放电电阻。该电池的充电规范要求使用分阶段定电流充电法。充电过程中要检测电池的端电压和充电电流,充电后期要测量单体电池的电压,并对电压较低的电池做相应处理。

本设计采用AVR单片机Mega16L作为核心,可同时控制两块539CH-1型蓄电池的充、放电过程。Mega16L通过串行总线接收上位机的命令,然后通过SPI总线将数据发送给TLV5638。单片机通过多路模拟开关CD4053将TLV5638的两路D/A输出送入信号调整电路,从而完成对充放电电流的控制。放电过程中,Mega16L通过控制8D锁存器74LS573和复合管阵列ULN2081控制放电电阻接入。系统框图如图1所示。


图1  系统原理框图

硬件设计

硬件系统包括串行通信电路、充电和放电控制电路、继电器驱动电路等模块。

通信电路

单片机通过串口与上位机通信。Mega16L端口为TTL电平,而上位机串口为RS232C标准接口。因此,在上位机与单片机通信时需要进行电平转换。本设计采用MAX232完成TTL电平与RS232接口电平之间的转换。

充电和放电控制电路

单片机收到上位机的充、放电控制命令后,通过SPI口将控制信号发送给TLV5638。TLV5638将收到的数字信号转换成模拟信号,并送入信号调整电路。模拟控制信号经调整后送入充电或放电电源的PI控制器,对充电和放电电流进行控制。单片机通过CD4053选择控制信号的输出通道,使该控制器可同时对2块蓄电池进行充电和放电。该部分电路原理图如图2所示。

D/A变换

本设计使用双通道l2位电压输出型高速DA转换器TLV5638完成数模转换。设计中,将Mega16作为主机,通过SPI口直接与TLV5638的串行接口相连。因为Mega16的SPI口为4线串口,所以连接时单片机SPI口的PB6(MISO)悬空。

串行通信时,CS引脚出现下降沿时通信开始,数据在SCLK的下降沿逐位移入TLV5638的内部寄存器。最先移入的是数据的最高位。当16位数据全部移入或CS引脚变高时,TLV5638移位寄存器中的数据被存入相应的锁存器,锁存器的选择由数据中的控制字确定。因此,当Mega16需要向TLV5638发送数据时,PB7先从高电平跳到低电平,然后通过SPI口连续进行两次写操作,向TLV5638发送个字节数据。两次写操作完成后,在SCLK的第16个上升沿,相应锁存器的内容自动更新。

应用中,TLV5638工作于慢速正常模式,采用2.048V内部参考电压。更新TLV5638某一路DAC数据时,必须保证另外一路数据不变。

Mega16的SPI口可采用4种不同的数据传输格式工作,传输格式由SPI控制寄存器中的CPOL位和CPHA位控制。应用中,考虑到TLV5638的使用要求,令CPHA=0,CPOL=1(传输开始时采样SCK下降沿,结束时采样SCK上升沿)。


图2  D/A变换与通道选择

信号通道选择

Mega16通过PD4和PD5以及外围逻辑电路控制信号的输出通道。逻辑电路包括1片7404和2片CD4053。以TLV5638的OUTA输出信号为例。模拟控制信号从TLV5638输出,经滤波后送入CD4053的X通道和Y通道。单片机PD4一方面直接与CD4053控制端A相连,另外还通过反相器7404与CD4053控制端B相连。这样就保证A端和B端的控制信号反相,使任意时刻X、Y通道中只有一个可以输出有效控制信号,从而保证该路充电和放电不发生冲突。应用中没有使用CD4053的Z通道,应将其与控制端C及使能端一起接地。

继电器驱动电路

放电后期,需要将电池中的剩余容量完全放出,最终使单体电池电压下降到0V。设计中,利用继电器将放电电阻并联于单体电池两极,从而达到释放电池剩余容量的目的。继电器由8D锁存器74LS573和达林顿管阵列ULN2801驱动。单片机PA0~PA7输出控制信号,PD2、3、7和PC6、7输出5片74LS573所需的锁存使能信号。控制信号由74LS573锁存,然后通过ULN2801驱动继电器工作,将

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top