微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > eGaN FET比拼MOSFET,驱动器和布局

eGaN FET比拼MOSFET,驱动器和布局

时间:09-07 来源:互联网 点击:

  在本系列的第一篇文章中,我们使用不同的衡量标准对增强型氮化镓(eGaN)功率器件和先进的硅MOSFET进行了比较。eGaN FET之所以与硅器件不同,是因为它们具有明显更快的开关速度,因此我们必须研究针对栅极驱动、布局和热管理的不同要求,而在某种程度上这些因素都是相互影响的。

  为了确定栅极驱动电路的要求,以及它们与传统硅MOSFET驱动器的区别,我们必须将硅FET器件和eGaN FET器件的参数进行比较(表1)。在考虑栅极驱动要求时,eGaN FET的三个最重要参数是:最大允许栅极电压、栅极阈值电压、“体二极管”压降。

  与传统硅器件相比,eGaN FET最大允许的栅极至源极电压是较低的。其次,其栅极阈值与大多数功率MOSFET相比也是较低的,但它受负温度系数的影响没那么大。第三,“体二极管”正向压降要比同等的硅MOSFET高1V。

  

  栅极下拉电阻

  eGaN FET提供的一大优势是其可实现的开关速度。然而,伴随这个新功能的更高di/dt和dV/dt不仅要求布局具有更小的寄生电容、电阻和电感,而且还会给栅极驱动器增加一些新的考虑因素。让我们看一个半桥电路,该电路使用一个具有高dV/dt导通值的补偿器件,如图1所示。‘米勒’充电电流从漏极(开关节点)经过CGD和CGS直到源极,以及通过CGD到RG(内部栅极电阻)和RSink(栅极驱动器吸收电阻)再到源极。避免这个器件dV/dt(米勒)导通的条件是:

  

  其中:α= 无源网络时间常数(RG + RSink) x (CGD + CGS) dt = dV/dt 开关时间。因此,为了避免eGaN FET的米勒导通,有必要限制器件栅极和源极之间的总电阻路径(内部栅极电阻RG和外部栅极驱动吸收电阻RSink)。有人可能会辩称,对于具有良好米勒比率(QGD/QGS(VTH)《1)的器件来说,不必有这样的要求。但实际上,由于QGD会随VD而增加,这个比率将随着开关电压的增加而慢慢变差,因此不能单单依靠它来防止米勒导通。

  在本系列的第一篇文章中,我们使用不同的衡量标准对增强型氮化镓(eGaN)功率器件和先进的硅MOSFET进行了比较。eGaN FET之所以与硅器件不同,是因为它们具有明显更快的开关速度,因此我们必须研究针对栅极驱动、布局和热管理的不同要求,而在某种程度上这些因素都是相互影响的。

  为了确定栅极驱动电路的要求,以及它们与传统硅MOSFET驱动器的区别,我们必须将硅FET器件和eGaN FET器件的参数进行比较(表1)。在考虑栅极驱动要求时,eGaN FET的三个最重要参数是:最大允许栅极电压、栅极阈值电压、“体二极管”压降。

  与传统硅器件相比,eGaN FET最大允许的栅极至源极电压是较低的。其次,其栅极阈值与大多数功率MOSFET相比也是较低的,但它受负温度系数的影响没那么大。第三,“体二极管”正向压降要比同等的硅MOSFET高1V。

  

  栅极下拉电阻

  eGaN FET提供的一大优势是其可实现的开关速度。然而,伴随这个新功能的更高di/dt和dV/dt不仅要求布局具有更小的寄生电容、电阻和电感,而且还会给栅极驱动器增加一些新的考虑因素。让我们看一个半桥电路,该电路使用一个具有高dV/dt导通值的补偿器件,如图1所示。‘米勒’充电电流从漏极(开关节点)经过CGD和CGS直到源极,以及通过CGD到RG(内部栅极电阻)和RSink(栅极驱动器吸收电阻)再到源极。避免这个器件dV/dt(米勒)导通的条件是:

  

  其中:α= 无源网络时间常数(RG + RSink) x (CGD + CGS) dt = dV/dt 开关时间。因此,为了避免eGaN FET的米勒导通,有必要限制器件栅极和源极之间的总电阻路径(内部栅极电阻RG和外部栅极驱动吸收电阻RSink)。有人可能会辩称,对于具有良好米勒比率(QGD/QGS(VTH)《1)的器件来说,不必有这样的要求。但实际上,由于QGD会随VD而增加,这个比率将随着开关电压的增加而慢慢变差,因此不能单单依靠它来防止米勒导通。

  基于同样的原因,在总线电压非常低的情况下,由于QGD/QGS(VTH)仍远小于1,因此不一定要符合公式(1)。为了安全起见,对于更高电压的器件,推荐使用0.5Ω或0.5Ω以下的栅极驱动下拉电阻。

  

  栅极上拉电阻

由于eGaN FET的总米勒电荷(QGD)远小于相同导通电阻的功率MOSFET,因此eGaN FET器件的开关速度有可能比后者快得多。如上所述,在“硬”开关转换期间,太高的dV/dt实际上会形成直通状态而降低效率。因此我们建议器件具有调整栅极驱动上拉电阻的能力,以最大限度地减小转换时间,从而不会引起其他不必要的机械部件损耗。这样也可以调整开关节点电压的过冲和振铃来改善EMI。在功率MOSFET应用中,这是以一个电阻和一个反并联二极管串接在栅极驱动输出端来完成的。然而,对于

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top