使用MCU或片上系统 (SOC)可以简便地提高太阳能板的效率
图6电池充电
可以使用一颗片上系统(SoC)实现我们谈到的整个系统,比如赛普拉斯的混合信号芯片PSoC,其具备可编程模拟和可编程数字逻辑。所需的外部组件仅仅是一个二极管和DC-DC转换器的电感,以及用来平衡电池和PV模块电压的电阻。
图7:PSoC实现示意图
PSoC包含的跨阻放大器(TIA)组件可以提供基于放大器的和对数电流-电压转换增益,并具有阻抗增益,用户可以选择带宽。放大器的增益可以使用反馈电阻器设置,可以通过固件选择20?K、30?K、40 ?K,80?K,150?K, 250?K,500?K和1 M?。光电二极体通常输出体现为电容,并联一个反馈电容可以保证其稳定性。TIA有满足这个要求的可编程反馈电容。二极管的特性可能会随环境条件而变化。可以通过PSoC编程来适应这些变化的条件。
输出电压是使用20-bit Delta Sigma ADC数字化的。通过为ADC选择合适的片上参考,就有可能测量到2 uV的电压。ADC参考采用是精度很高的源,只有不到1%的错误。在这个系统中,可以使用一个ADC测量多个电压。这些电压可以通过PSoC内部的模拟多路复用器来顺序采样和数字化。多路复用器可以通过固件在输入通道之间切换。PWM模块是驱动直流电机和MOSFET(其为电池充电)脉冲必需的。还可以使用PWM硬件通过一点编程产生这些PWM波形。内部实时时钟(RTC)跟踪时间,因此一旦太阳下山,光强度显著下降时,面板会回到初始位置面向对东方。第二天面板继续追踪太阳。RTC还用来防止过充电。
通过本文提到的实施三个子系统可以提高光电系统效率。过高的安装费用和PV模块的低转换效率是阻止人们采用太阳能发电的原因。使用智能方法,就可以提高效率,就有可能鼓励人们使用PV模块。任何现有的太阳能板只需要做很少的努力就都可以升级到有这三个实现。升级的成本相比PV模块本身来说很少。让我们开始利用太阳能,减少环境污染,建立绿色星球。
- 基于PVT提高太阳能综合利用效率应用研究(12-09)
- PV逆变器应用升温,推动SiC功率元件发展(09-21)
- 通过可定制单芯片系统提高光伏逆变器的效率(上)(02-25)
- 基于dsPIC的PV逆变器的一种改进结构及其实现(04-25)
- SPV1040太阳能电池充电解决方案(08-11)
- 一种基于PVDF的双发电系统的设计(06-14)