Delta-Sigma A/D转换器原理及其PSpice仿真 2011-11-21
图5是∑-△转换器以0 V模拟输入运行的仿真图。
图5中,方波是D触发器输出的串行比特流,幅度较大的三角波是积分器的输出波形。仿真配置文件设置如图6所示。
2.3 输入信号电压幅度不为0 V的情况
如果施加一个小的负模拟输入电压,积分器将有一个向负方向倾斜它的输出的趋势。反馈只能以一个固定的电压(电源电压)在一定的时间内校正积分器的倾斜,这样触发器的比特流输出将和前面不完全相同。图7是∑-△转换器以小负模拟输入运行的示意图。
施加一个较大的负模拟输入信号到积分器,它的输出向正方向倾斜的更陡。这样,反馈系统将输出比以前更多的1,以带领积分器输出回到0 V。图8为∑-△转换器以较大负模拟输入运行的示意图。
用平均串行比特流的方法可以从该电路获得并行二进制数输出。例如,用一个计数电路搜集在一个给定时钟脉冲中触发器输出1的总数(正输入电压数输出0的总数),该计数器的值可以用来表示模拟输入电压。图9是∑-△转换器以5 V模拟输入运行的仿真图。
图中,正弦波是输入信号,方波是D触发器输出的串行比特流,三角波是积分器的输出波形。图10只显示输入信号和D触发器输出。
从图10中可以清楚地看到输入信号对输出脉冲宽度和频率的调制,输出是占空比随模拟输入电压大小变化的1,0位流。
3 PSpice仿真对不同电压幅度的输入信号积分器参数的调整
对不同幅度的输入信号,需要调制积分器的参数,以提高A/D转换的精度。图11是理想积分器及其输入/输出公式,其中RC是积分器的积分常数。
对应本文的电路R1、R5和C1决定积分器的时间常数,R1C1是输入信号的积分常数,R5C1是反馈信号的积分常数。改变电阻或电容值会改变转换精度。改变C1会同时改变输入信号和反馈信号的时间常数,当输入信号的幅值范围变化时通过改变R1来提高转换精度要好一些。通过对R1的参数扫描可以看出积分器时间常数对转换精度的影响。
通过参数扫描分析可知,电阻增加,减小了输入信号的强度,脉冲直接的间距减小,脉冲之中包含更少的“0”或“1”,说明转换精度降低。但是R1也不能太小,如果R1太小在对应输入信号幅值较高处会丢失一些脉冲,也就是丢失了数据。时间常数的选取要根据实际需求中输入信号波形的幅值范围进行反复仿真以获取最佳参数,并用实际电路测试来确定。
4 小信号输入的仿真例子
前面在说明∑-△转换器原理时输入信号电压幅值为5 V,实际应用中很多情况下输入信号是毫伏量级的,下面对幅值为0.05 V(50 mV)的正弦信号进行仿真。用参数仿真的方法确定R1=1.1kΩ。仿真结果如图12所示。
5 结语
∑-△A/D转换器具有非常高的分辨率,而且噪声很低,因为它采用了过采样的技术,因此对于前端的抗混叠滤波器的要求也大大降低,一般一个简单的RC低通滤波器就足够了。这类ADC的线性度也非常好,目前已成为实现高精度A/D转换的主要方式,但是它付出的代价是采样速率的降低。另外,由于内部滤波器对于模拟信号的突变和通道的切换需要相对长的建立时间,而且输出的数据与模拟输入之间有较长的延时,所以这类A/D转换器适用于那些模拟信号近似于直流或变化很慢的应用,如温度测量、压力测量等,近年来在音频领域也有应用。
Delta-Sigma 转换器 PSpice 相关文章:
- Delta-Sigma A/D转换器原理及其PSpice仿真(11-21)
- 1200V CoolSiCTM MOSFET兼具高性能与高可靠性(06-28)
- 如何借用同步整流架构提高电源转换器效率(12-09)
- 高端准谐振零压开关反激式转换器中的ESBT技术(12-09)
- A→D 转换器的保真度测试(12-09)
- 如何通过配置负载点转换器 (POL) 提供负电压或隔离输出电压(12-09)