微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 开关变压器讲解之直流脉冲对铁芯的磁化

开关变压器讲解之直流脉冲对铁芯的磁化

时间:02-09 来源:互联网 点击:

至于要经过多少个直流脉冲电压之后,开关变压器铁芯中的磁通密度才达到最大值Bm,这个与直流脉冲电压的幅度有关,而且与直流脉冲电压的脉冲宽度还有关,即与开关变压器的伏秒容量大小有关。开关变压器的伏秒容量越大,对应每个直流脉冲产生的磁通密度增量ΔB数值就越小,因此,需要直流脉冲的个数就越多;反之,变压器的伏秒容量越小,需要直流脉冲的个数也越少。当变压器的伏秒容量很小时,可能只需要一个直流脉冲,就可以使磁通密度达到最大值Bm,甚至会使变压器铁芯出现磁饱和。

变压器的伏秒容量对磁化曲线的影响非常大,变压器的伏秒容量越大,对应每个直流脉冲电压产生的磁通密度增量ΔB相对也越小,磁通密度的最大值Bm也越小;同样一种变压器铁芯材料,选取不同的变压器的伏秒容量,对应的Bm值和Br值也是不一样的。因此,变压器的伏秒容量对于变压器设计是一个非常重要的参数。

如果变压器的伏秒容量取得比较小,而加到变压器初级线圈a、b两端的直流脉冲电压幅度又比较高,且脉冲宽度也比较宽,则流过变压器初级线圈的励磁电流将很大;此时,变压器铁芯中的磁通密度将很容易出现饱和。当变压器铁芯中的磁通密度出现饱和的时候,磁通密度B或磁通将不会随着磁场强度或励磁电流的增加而增加,此时的最大磁通密度一般称为饱和磁通密度,用Bs表示,对应的磁通密度增量用ΔBs表示。

这里还需补充说明:变压器铁芯充磁和退磁的过程虽然与电容器充放电的过程很相似,但还是有很大区别的。电容器充满电后,如果电源断开,不再对电容器继续充电,则电容器会对负载放电,并且放电过程将会一直进行下去,直到电容器存储的电荷全部释放光为止;而变压器铁芯被磁化到磁通密度的最大值Bm后,变压器初、次级线圈产生的反电动势,以及其感应电流产生的反向磁场对变压器铁芯进行退磁,却不能使磁通密度由最大值Bm退回到零,而只能退回到剩余磁通密度Br。

当磁场强度H下降到零时,变压器铁芯中的磁通密度不能跟随返回到零,而只能退回到剩余磁通密度Br。这种现象称为变压器铁芯具有磁矫顽力,简称矫顽力,用Hc表示;这同时也说明变压器铁芯铁芯的磁化过程是不可逆的。变压器铁芯存在磁矫顽力这是铁磁材料或磁性材料最基本的性质;不同性质的磁性材料,其具有的磁矫顽力大小也不同;一般变压器铁芯都选用磁矫顽力较小的铁磁物质为制造材料。

变压器铁芯的磁矫顽力Hc与剩余磁通密度Br的概念是不一样的,从磁矫顽力的定义来说,磁矫顽力Hc就是变压器铁芯退磁时,由最大剩余磁通密度Brm下降到0,对应所需要的磁场强度,不过这里的最大剩余磁通密度Brm是指变压器铁芯达到磁饱和时所产生的剩余磁通密度Br,因为一般意义的剩余磁通密度Br都是对应动态最大磁通密度来说的。

但我们不要理解为,只有变压器铁芯达到磁饱和后,才会有磁矫顽力;在变压器铁芯被磁化的过程中,磁矫顽力从始至终都是存在的,只不过与习惯上定义的Hc在数值上不一样。磁矫顽力与导磁率一样,也是人们用来掩盖住人类至今还没有完全揭示的,磁场强度与电磁通密度之间内在关系的概念。

因此,严格来说,磁矫顽力也是随着磁场强度H大小改变的,它与磁通密度一样,会随着磁场强度H的增大,而趋于饱和。这就是为什么,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br最终能够分别稳定在某个数值之上的主要原因。

由图2-2我们可以看出,随着磁通密度的增加,需要磁场强度增加更大,因为铁芯的导磁率会随着磁场强度的增大反而变小,而铁芯的磁矫顽力也不会因磁场强度的增大而增大,它总会有一个极限值;当变压器线圈中产生反电动势和感应电流,感应电流产生的反向磁场对变压器铁芯进行退磁时,铁芯的导磁率和磁矫顽力的增量反而会向增大的方向变化,因此,对于每输入一个脉冲电压,总可以在磁通密度和磁场强度以及磁矫顽力三者之间找到一个动态平衡点,使变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br能够达到相对稳定。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top