微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 20 MJ补偿脉冲发电机的应用设计

20 MJ补偿脉冲发电机的应用设计

时间:12-08 来源:互联网 点击:

补偿脉冲发电机(CPA)是一种特殊的同步发电机[1],利用磁通压缩的原理,减小电枢电感,当电机工作的时候,会产生很大的脉冲电流[2].它是目前公认的相对又实用价值的电磁炮电源[3],采用飞轮以机械形式储存能量,克服了电容器和单机发电机的各自缺点,集储能、转换和调节于一体的脉冲电源,大大减少了从原动机到电磁炮负载的功率输出中间环节,具有单元件的综合优势。根据脉冲电源研究内容,设计制造储能20 MJ以上的补偿脉冲发电机样机,通过对电机内部磁场的分析和负载实验,解决在补偿脉冲发电机制造方面的困难,对电机适用于电磁炮进行可行性分析,为下一步制造出具有实战水平的CPA打下理论和工程基础。

1 基本参数

以电机体积和重量为优化目标,本文设计制造一台空心、自励模式、转场式结构、峰值功率为300 MW 以上、储能20 MJ和转换效率15%的两相四极的空心选择被动补偿脉冲发电机样机。电机的主要参数见表1.

2 基本结构

补偿脉冲交流发电机,是一种特殊的同步发电机,通过对目前补偿式脉冲发电机的优缺点研究[4],确定该电机的结构为:两相四极、空心、被动补偿、自励模式、转场式结构。

电机系统结构包括定子、转子、电刷、滑环、轴承、端盖、电力电子装置和机壳[5].转子由转轴、转子轭、励磁绕组、碳纤维绷带、铝补偿筒组成。主轴上固定钛合金转子轭通过过盈连接,转子励磁绕组粘结在转子轭外表面,绕组外部用碳纤维环氧树脂绑扎绑带固定,绑带外面为铝补偿筒;定子由主电枢绕组、玻璃纤维绷带、次电枢绕组、定子轭、机壳组成。定子轭固定在机壳内壁上,内壁上粘结有定子无槽次电枢绕组(用于励磁),次电枢绕组和主电枢绕组(用于放电)之间为碳纤维环氧树脂绑扎绷带,定子无槽电枢绕组的端部用屏蔽盒罩住,转子通过端盖轴承的支撑固定于定子内,主轴的一端连接原动机,主轴的另一端固定有滑环和电刷。

3 转子设计

转子基本尺寸采用空心转子结构的电机,转子飞轮的最佳内外半径比为0.45时[6],转子的储能量为实心转子储能量的95%以上,可以节约转子材料和减轻转子重量。

该电机旋转在很高的速度,一般的铁磁材料无法满足其力学效应,一般采用复合材料或钛来制作。钛(Ti)是一种银色的过渡金属,属于无磁性金属,在很大的磁场中也不会被磁化,它还有耐高温、耐腐蚀等优良特性[7].

钛合金强度高,且电阻率低,在高温和低温状态下都能保持高强度。与复合材料相比,采用钛转子结构可以提高储能密度,减少转子的体积,且工艺相对来说简单一些。因此,在本设计中,转子是采用钛材料。

3.1 转子轭的选择

转子轭由钛合金构成。钛合金材料性能[8]如下:拉伸强度:1 000.0 MPa;拉伸模量:116.7 GPa;比强度:

221.2 MPa(g/cm3);比模量:25.8 GPa(g/cm3);密度:

4.52 g/cm3.电机旋转速度为12 000 r/min时,转子外径为0.088 m,转子内径为0.039 6 m,转子长为0.326 m,机械角速度为1 256.6 rad/s.

3.2 转轴材料的选择

转轴材料型号为25Cr2Ni4MoV.主要力学性能[9]指标(切向取样)如下:屈服强度为730~830 MPa;抗拉强度为σb ≥1 000 MPa;伸长率为δb ≥14%.

3.3 绷带的选择

绑带为碳纤维与环氧树脂复合的材料,其性能[10]如下:拉伸强度:1 471.0 MPa;拉伸模量:137.3 GPa;比强度:1 014.0 MPa(g/cm3);比模量:94.7 GPa(g/cm3);密度:1.45 g/cm3.

3.4 屏蔽筒材料的选择

补偿筒材料的选择对于电机的设计是个很重要的环节,它必须导电性能好且非导磁[11].当点击工作放电时,由于补偿筒阻止磁场的穿过,电枢反应磁场被压缩在定子和转子的气隙中,这样电枢绕组的电感就会大大减小,补偿电机的瞬时工作功率就会大大提高。

基于补偿筒材料的限制,必须导电性能良好且不能导磁,铜和铝满足以上要求,但是,当电机正常工作时,电机的转速非常高,有很大的离心力,所以,从机械性能和安全考虑,选择铝。

对于补偿脉冲发电机,补偿筒的厚度尺寸对电机的性能影响很大,如果补偿筒太薄,电机放电时补偿筒不能很好的补偿电枢反应磁通,电机内电枢绕组的内电感不满足要求,放电峰值电流不能满足。如果补偿筒太厚,就会增大电枢绕组和励磁绕组之间的距离,减小了两者之间的耦合,为达到同样的功率,电机需要增加励磁功率才能达到要求。

补偿筒的厚度直接影响电机内部磁场和电感的稳定,当它的厚度大于8 mm时,电枢绕组的电感就基本稳定,不会因为补偿筒的薄厚而变化,也就是说电机内磁场的分布趋于稳定。因此,为了尽可能减小电机的间隙,本次设计补偿筒的厚度为8 mm.因屏蔽筒工作在高速旋转状态,须选择高强度的硬质合金铝。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top