微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于simulink的V2G充放电机建模与仿真

基于simulink的V2G充放电机建模与仿真

时间:02-21 来源:互联网 点击:


首先通过S函数计算仿真开始时刻,然后将仿真时刻减去开始时刻的到仿真时间t。Rem函数是一种采用fix函数的取余运算。公式如下:

将t和周期T分别带入rem函数计算t1,t1是在某一个周期内仿真执行的时间。通过t1和导通时间ts的差U判断输出类型,当U0时,t1ts开关管处于导通阶段,输出脉冲1。U>0时,t1>ts开关管处于关断阶段,输出脉冲0。将两股信号合并后输出连续脉冲波,控制开关管开断。控制流程如图3所示。

3 仿真结果分析
根据分析搭建了实现紧急电源功能的电动汽车充放电机的simulink仿真模型,如图4所示。控制单元主要由BOOST恒压控制和电压PID控制组成。

电动汽车的储能单元采用simulink内部自带的锂离子电池模型(300 V、100Ah)模拟。标称放电电流为0.4 C时的放电特性,如图5所示。


中间平衡电压采用700 V。提高开关管的开关频率可以减小变换器的体积和重量,降低变换器的工作噪音,而一般IGBT的开关频率为20 kHz,所以DC/DC变换的开关频率设为20 kHz,根据电压纹波系数计算,取C1=500μF、C2=200μF。根据电流纹波系数和连续临界值计算,取L1=0.1 mL。0.1 s内的仿真结果如图6所示。

设置SOC初始值为80%,根据图5所示电池端电压较长时间平衡在322 V左右,仿真结果可以模拟SOC降到20%时间内充放电机的情况,当SOC低于20%时退出运行。输出中间平衡电压范围是728~737 V,有效值为729.3 V,与设置值的误差为4.1%。根据公式(1)计算占空比值为0.558 4。实测占空比为D=0.538 6~0.539 5,如图6所示。根据设置的输出电压为700 V,占空比的计算值为0.543。与实测D的误差为0.6%~0.8%,与根据实测中间平衡电压计算的占空比误差是2.7%。图7和图8给出了输出三相电压、调制系数M、线电压Uab、相电压Ua波形。Ua的有效值为219.2,与实际值的误差为:0.36%。调制系数经过25 ms达到稳态,稳定值为0.856。对a相线电压进行了谐波分析,如图9所示。总谐波THD=1.68%,符合电网的入网要求。

4 结论
通过分析表明,该模型有很好的动态响应,实测值与计算值误差在允许的范围之内,输出三相波形能很好的跟踪参考波形,谐波含量少,波形平稳波动小,能够实现充放电机作为紧急电源这一功能。只要有足够的容量,完全可以满足用户的要求。
通过对充放电机拓扑结构和控制单元的建模分析,并对其中一种功能仿真,对电动汽车充放电机的模型有了初步认识,为进一步研究奠定基础。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top