松耦合全桥谐振变换器的传输特性研究
9和10分别是和改变时的阻抗角和输出电压随开关频率变化图。综合图6、9、10,可以看出,虽然低谐振点和高谐振点都可能得到较大的功率输出,但在低谐振点附近,输出电压随着频率变化的曲线非常陡,说明输出电压对频率的变化非常敏感。频率稍微偏离低谐振点,输出电压就会变化很多。
图9 Cp不同时电压和阻抗角变化图
图10 Cs不同时的电压和阻抗角变化图
在低谐振频率点附近的最高输出电压还随着补偿电容和的变化而变化,而且变化的幅度很大,说明了输出功率也有大幅度的变化。而高谐振点附近,输出的最高电压变化幅度很小,可以得到比较稳定的功率输出。
此外,低谐振点的频率较小,如果需副边输出相同的功率,工作于低谐振点时的开关器件的电流应力比高谐振点大,这在大功率应用中,导通损耗将增加很多。
综上所述,在本文的实验中,所选取的工作频率在高谐振点附近。
当原边补偿电容或者副边补偿电容增加时,由图9和图10可知电路的谐振频率将减小。在实际应用中,如果采用频率跟踪的控制方法,只要选取合适的补偿电容,使电路的高谐振点频率与其他两个谐振点频率相差比较大,远离其他两个谐振点,就能使频率跟踪电路易于工作在高谐振点附近,得到较大的功率输出。当原副边为串联补偿的松耦合变换器补偿电容在一定范围内变化时,如果采用频率跟踪的控制方式,就能使负载得到最大功率的输出。这时,在副边功率相同的情况下,原边所需的视在功率最小,系统效率最高。
5实验验证
为了验证文中理论分析,针对于原副边边均为串联补偿的变换器,设计制作了一台松耦合全桥变换器的原理样机。松耦合变压器采用UF100B的U型磁芯,原副边绕组匝数为20匝,每个磁芯的两个芯柱各绕10匝,以尽量提高耦合系数,气隙。参数:,,,, 图8为,,负载分别为、时的输出与频率之间的关系图。由图11可见,在开关频率为的时候,两种负载下输出电压都达到最大值,说明此时电路基本处于谐振频率状态。这也验证了负载在一定范围内变化时谐振频率基本不变。而且,输出电压
图11输出与频率的关系
随着开关频率的变化很小,这也和前面的分析是一致的。由于实际电路存在损耗,所以负载电阻越大在谐振点输出电压越高,这和图9仿真计算的结果是一致的。
图12和图13是补偿电容不同时,同一负载在不同的谐振频率处的输入输出关系图,其中,,分别为、时,谐振频率为;,,分别为、时谐振频率为。从图12和图13可以看出,虽然补偿电容不同,但在各自的高谐振点附近得到的输出电压是相差不大。因此,原副边的补偿电容在一定范围内变化时,采用频率跟踪的方式跟踪系统的谐振频率,使系统工作在高谐振点,负载得到的功率是很接近的,这和前面分析是一致。
图12 R=20补偿电容不同时的输入输出
图13 R=10补偿电容不同时的输入输出
图14为,,,开关频率时驱动、桥臂中点电压、输入电流和原边补偿电容电压的波形,考虑
图14 f=30kHz
到电流是用LEM检测的,有的延时,可见电压和电流基本同相位,系统处于谐振状态。图15是时桥臂中点电压和电流波形,此时开关频率小于谐振频率,电压滞后于电流。图16是时桥臂中点电压和电流波形,此时开关频率大于谐振频率,电压超前于电流。
图15 f=27.3kHz 图16 f=37.7kHz
6结论
原边串联副边串联补偿的松耦合谐振变换器有以下的特性:
1如果变换器的松耦合变压器磁芯之间的距离基本不变只是负载在一定范围内变化时,谐振频率基本不变。
2如果谐振元器件随着温度的变化有一定的变化,采用频率跟踪的控制方法可以避免元器件参数的影响,使负载得到最大能量的输出。
3如果发生频率交叉现象,工作频率选择在高谐振点附近,则最大输出功率随着补偿元件的变化而变化得很小,易于控制。
7参考文献
[1]H.Sakamoto, K.Harade, S.Washimiya, K, takehara. Large Air-Gap Coupler for Inductive Charger[J],IEEE transactions on power electronics, Vol 35,No.5 January 1999 pp3526-3528
[2]Wang C S, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems [J].IEEE Trans. on Industrial Electronics,2004,51(1):148-157
[3] 毛赛君,非接触式感应电能传输系统关键技术研究,南京航空航天大学硕士学位论文,2006
[4]A.P.Hu, J.T.Boys,“Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies,”in Proc. international conference on power system technology, 2000, pp.327-332
- 基于BOOST型DC/DC转换器的斜坡补偿电路(12-09)
- 一种带有曲率补偿的宽输入带隙基准源设计(12-09)
- 一位工程师对环路补偿的计算和仿真分享心得经验(12-09)
- 20 MJ补偿脉冲发电机的应用设计(12-08)
- 串-并联补偿式UPS 串联变换器研究(12-08)
- TPS65142环路补偿设计考虑因素之讨论(12-08)