微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 工程师不可不知的开关电源关键设计(五)

工程师不可不知的开关电源关键设计(五)

时间:06-19 来源:互联网 点击:

国内外DC/DC电源设计大多采用前置启动+前置PWM控制方式,后级以开关形式将采样比较的误差信号通过光电耦合器件隔离传输到前级PWM电路进行脉冲宽度的调节,进而实现整体DC/DC电源稳压控制。如图6所示,前置启动+前置PWM控制方式框图所示,输出电压的稳定过程是:输出误差采样→比较→放大→光隔离传输→PWM电路误差比较→PWM调宽→输出稳压。Interpoint公司的MHF+系列、SMHF系列、MSA系列、MHV系列等等产品都属于此种控制方式。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分:

(1)以集成电路U2为核心的采样、比较电路的环路补偿设计;

(2)以前置PWM集成电路内部电压比较器为核心的环路补偿设计;

(3)输出滤波器设计主要考虑输出电压/电流特性,在隔离式电源环路稳定性补偿设计时仅供参考;

(4)其它部分如功率管驱动、主功率变压器等,在隔离式电源环路稳定性补偿设计时可以不必考虑。

而如图7所示,后置隔离启动+后置PWM控制方式框图,输出电压的稳定过程是:输出误差采样→PWM电路误差比较→PWM调宽→隔离驱动→输出稳压。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分:

(1)以后置PWM集成电路内部电压比较器为核心的环路补偿设计;

(2)输出滤波器设计主要考虑输出电压/电流特性,在隔离式电源环路稳定性补偿设计时仅供参考。

(3)其它部分如隔离启动、主功率变压器等,在隔离式电源环路稳定性补偿设计时可以不必考虑。

比较图6和图7控制方式和环路稳定性补偿设计可知,图7后置隔离启动+后置PWM控制方式的优点如下:

(1)减少了后级采样、比较、放大和光电耦合,控制环路简捷;

(2)只需对后置PWM集成电路内部电压比较器进行环路补偿设计,控制环路的响应频率较宽;

(3)相位裕度大;

(4)负载瞬态特性好;

(5)输入瞬态特性好;

(6)抗辐照能力强。实验证明光电耦合器件即使进行了抗辐照加固其抗辐照总剂量也不会大于2x104Rad(Si),不适合航天电源高可靠、长寿命的应用要求。

6 结语

开关电源设计重点有两点:一是磁路设计,重点解决的是从输入到输出的电压及功率变换问题。二是稳定性设计,重点解决的是输出电压的品质问题。开关电源稳定性设计的好坏直接决定着开关电源启动特性、输入电压跃变响应特性、负载跃变响应特性、高低温稳定性、生产和调试难易度。将上述开关电源稳定性设计方法和结论应用到开关电源的研发工作中去,定能事半功倍。

  三、大功率开关电源散热设计原理

1、散热的原因

电子产品的芯片的高度集成,功能要求越来越多,体积要求越来越小。今天的元器件得以快速地向小型化。高功能。与高效率发展。高性能的元器件在高速度运行下会产生大量的热,这些热量必须立即去除以保证元器件能在正常工作温度下以最高效率运行。因此热传导相关技术随着电子工业的发展不断地受到挑战。

例如:电脑出现当机现象、LED散热不良会引起光衰等等、

2、散热材料种类:

金、银、铁、铜、铝、铝合金、硅胶片、等

3、散热原理

A 散热器的散热形式主要有辐射和对流两种形式。

辐射换热:热能用辐射形式传播,不需要借助任何介质,可以在真空状态下传播,比如太阳的热能经过宇宙传到地球上。

对流换热:通过空气或其他介质传播热能,比如对流散热器将空气加热。空气将房间内一切物品加热,对六器主要依靠空气运动传播热能。

传统意义上所称的辐射散热器,是指辐射散热器在总散热量中占相对份额的散热器,目前通常最典型的辐射散热器如铸铁、钢制柱式散热器、铜铝复合散热器等等,其中依靠辐射作用所传播的热能只占30%,另外70%热能是以对流式传播的。而对流散热器是基本无辐射换热(或极小)的散热器,如佛瑞德铜管对流散热器,铜管对流散热器利用热空气轻,向上流动的原理,空气循环达到全房间的升温,比辐射式的散热器更加舒适、升温更快。

B、 散热的方式有 辐射散热 传导散热 对流散热 蒸发散热

机体各组织器官产生的热量,随着血液循环均匀地分布于全身各部。当血液流经皮肤血管时,全部热量的90%由皮肤散出,因此皮肤是人体散热的主要部位。还有一小部分热量,通过肺、肾和消化道等途径,随着呼吸、尿和粪便散出体外。

(一)散热的方式——主要是物理方式

1.辐射 辐射是指机体以发射红外线方式来散热。当皮肤温高于环境温度时,机体的热量以辐射方式散失。辐射散热量与皮肤温、环境温度和机体有效辐射面积等因素有关。在一般情况下,辐射散热量占总散热量的40%。当然,如果环境温度高于皮

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top