工程师不可不知的开关电源关键设计(五)
,虽然比较稳定,但是瞬态恢复性能并非最好。滑离频率应该增大。 图3(d)为理想响应波形,接近最优情况,在绝大多数应用中,瞬态响应稳定且性能优良,增益裕度和相位裕度充足。 对于正向和负向尖峰,对称的波形是同样需要的,因此从它可以看出控制部分和电源部分在控制内有中心线,且在负载的增大和减少的情况下它们的摆动速率是相同的。 上面介绍了开关电源控制环路的两个稳定性判据,就是通过波特图判定小信号下开关电源控制环路的相位裕度和通过负载跃变瞬态响应波形判定大信号下开关电源控制环路的稳定性。下面介绍四种控制环路稳定性的设计方法。 4 稳定性设计方法 4.1 分析法 根据闭环系统的理论、数学及电路模型进行分析(计算机仿真)。实际上进行总体分析时,要求所有的参数要精确地等于规定值是不大可能的,尤其是电感值,在整个电流变化范围内,电感值不可能保持常数。同样,能改变系统线性工作的较大瞬态响应也是很难预料到的。 4.2 试探法 首先测量好脉宽调整器和功率变换器部分的传递特性,然后用“差分技术”来确定补偿控制放大器所必须具有的特性。 要想使实际的放大器完全满足最优特性是不大可能的,主要的目标是实现尽可能地接近。具体步骤如下: (1)找到开环曲线中极点过零处所对应的频率,在补偿网络中相应的频率周围处引入零点,那么在直到等于穿越频率的范围内相移小于315°(相位裕度至少为45°); (2)找到开环曲线中EsR零点对应的频率,在补偿网络中相应的频率周围处引入极点(否则这些零点将使增益特性变平,且不能按照期望下降); (3)如果低频增益太低,无法得到期望的直流校正那么可以引入一对零极点以提高低频下的增益。 大多数情况下,需要进行“微调”,最好的办法是采用瞬态负载测量法。 4. 3 经验法 采用这种方法,是控制环路采用具有低频主导极点的过补偿控制放大器组成闭环来获得初始稳定性。然后采用瞬时脉冲负载方法来补偿网络进行动态优化,这种方法快而有效。其缺点是无法确定性能的最优。 4.4 计算和测量结合方法 综合以上三点,主要取决于设计人员的技能和经验。 对于用上述方法设计完成的电源可以用下列方法测量闭环开关电源系统的波特图,测量步骤如下。 如图4所示为测量闭环电源系统波特图的增益和相位时采用的一个常用方法,此方法的特点是无需改动原线路。 如图4所示,振荡器通过变压器T1引入一个很小的串联型电压V3至环路。流入控制放大器的有效交流电压由电压表V1测量,输出端的交流电压则由电压表V2测量(电容器C1和C2起隔直流电流的作用)。V2/V1(以分贝形式)为系统的电压增益。相位差就是整个环路的相移(在考虑到固定的180°负反馈反相位之后)。 输入信号电平必须足够小,以使全部控制环路都在其正常的线性范围内工作。 4.5 测量设备 波特图的测量设备如下: (1)一个可调频率的振荡器V3,频率范围从10Hz(或更低)到50kHz(或更高); (2)两个窄带且可选择显示峰值或有效值的电压表V1和V2,其适用频率与振荡器频率范围相同; (3)专业的增益及相位测量仪表。 测试点的选择:理论上讲,可以在环路的任意点上进行伯特图测量,但是,为了获得好的测量度,信号注入节点的选择时必须兼顾两点:电源阻抗较低且下一级的输入阻抗较高。而且,必须有一个单一的信号通道。实践中,一般可把测量变压器接入到图4或图5控制环路中接入测量变压器的位置。 图4中T1的位置满足了上述的标准。电源阻抗(在信号注入的方向上)是电源部分的低输出阻抗,而下一级的输入阻抗是控制放大器A1的高输入阻抗。图5中信号注入的第二个位置也同样满足这一标准,它位于图5中低输出的放大器A1和高输入阻抗的脉宽调制器之间。 5 最佳拓扑结构 无论是国外还是国内DC/DC电源线路的设计,就隔离方式来讲都可归结为两种最基本的形式:前置启动+前置PWM控制和后置隔离启动+后置PWM控制。具体结构框图如图6和图7所示。 国内外DC/DC电源设计大多采用前置启动+前置PWM控制方式,后级以开关形式将采样比较的误差信号通过光电耦合器件隔离传输到前级PWM电路进行脉冲宽度的调节,进而实现整体DC/DC电源稳压控制。如图6所示,前置启动+前置PWM控制方式框图所示,输出电压的稳定过程是:输出误差采样→比较→放大→光隔离传输→PWM电路误差比较→PWM调宽→输出稳压。Interpoint公司的MHF+系列、SMHF系列、MSA系列、MHV系列等等产品都属于此种控制方式。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分
- 技术小贴士:设计开关电源时需要注意的一些关键问题(01-24)
- 高温镍氢电池关键技术(07-10)
- 动力电池研发的关键性因素探索(07-05)
- 工程师不可不知的开关电源关键设计(三)(06-19)
- 工程师不可不知的开关电源关键设计(六)(06-19)
- 工程师不可不知的开关电源关键设计(二)(06-19)