磷酸铁锂电池SOC估算研究
依据的模型的参数需要改变。电池老化后的SOC的修正对于完善BMS的管理和延长成组电池的寿命有重要意义。
由于ΔQ/ΔV曲线反应的是电池内部电化学的特性,电动汽车通常规定电池容量低于额定容量的80%认为电池寿命终止。此时,电池内部主要的化学反应取决于反应物的浓度和电池系统内部的结构。
图7描述了LiFePO4电池在DOD为100%的工作区间上循环200次后的ΔSOC/SOC特性,其容量衰退到额定容量的95%。
图7 老化前后ΔSOC/SOC曲线的比较
200次循环后,被测试电池的容量保持能力有所下降,内部结构也有所变化,容量的增加集中在了第一个峰对应的SOC值处。与新电池时比较发现,第二个峰对应的充入容量明显减少,这表明电池石墨负极的锂离子嵌入能力下降,电流接受能力降低,极化电压增大以及寿命下降。
4.3 修正电池SOC
BMS系统实时采集电池单体的电压、电流,并通过分析阶跃电流信号的电压变化计算得到电池内阻。消除欧姆压降UR的影响有助于得出变电流等优化充电方法下的电压变化值ΔV(恒流充电没有影响),然后等间隔(例如每10mV)取得对应区间的安时积分值ΔQ。数学上判断ΔQ/ΔV曲线的极值需要对曲线的函数求一阶导数,实际使用中我们发现两个极大值所处的电压均有一定范围。将电池从较低SOC点开始充电并记录充电过程的一组ΔQ值,通过简单的数据处理得到符合要求的两个极大值(特殊的,在1C等极化严重的充电倍率下时仅一个极大值)。对照峰值点出现时的电压值,判断是否是第一个峰值点位置并给予记录,当两次或多次充电过程的峰值点记录相同且与BMS记录的SOC值相差8%以上(通常电动汽车要求SOC精度8%左右),执行电池SOC的修正操作,记录修正事件以便调试分析。
5 结论
提供了不同充电倍率、不同老化程度下可靠和准确的单体SOC分析方法,数据处理较人工神经网络和卡尔曼滤波等方法有较大优势。通过ΔQ/ΔV曲线进行电池的SOC估算,可为目前基于开路电压的均衡提供更为准确的判断条件(SOC等于50%的第一个峰值),从而有效解决电池组的在线均衡问题,减小极限工作条件下对电池寿命的影响。同时准确快速的SOC估算为今后智能电池系统的管理控制策略提供依据。
- 磷酸铁锂电池的优缺点(01-11)
- 技术知识:海霸磷酸铁锂电池在移动基站的应用(11-25)
- 如何对浅放电应用中磷酸铁锂(LiFePO4)电池使用的TI阻抗跟踪电池电量计进行(07-26)
- 为何大容量磷酸铁锂电池需要大功率充电器?(06-24)
- 锂离子电池分类(03-06)
- 磷酸铁锂电池工作原理与特点(01-04)