微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > FDD-CDMA的下行链路的波束形成

FDD-CDMA的下行链路的波束形成

时间:12-26 来源:互联网 点击:

六、仿真结果
  本文假设每一个基站采用三个120度扇区.在仿真中,我们仅考虑相邻小区的干扰,如图2所示.目标扇区基站1a与相邻小区5(5a,5b,5c)和小于6(扇区6a,6b,6c)的移动台有干扰关系,而扇区1a中的移动台与扇区基站(2a,3a,4b,5b,6c,7c)有干扰关系.我们假设每个扇区有N个用户,且在扇区内均匀分布.整个仿真步骤描述如下:

图2 蜂窝仿真模型(1)上行链路干扰模型.扇区基站1a受小区5和6中用户的干扰;(2)下行链路干扰模型.扇区1a中的用户受扇区基站2a,3a,4b,5b,6c,7c的干扰.

(1)在扇区内按面积均匀分布随机产生一移动台的位置(r,θ),计算该移动台与干扰扇区基站的距离和入射方向.随机产生阴影衰落,计算路径增益β.一般来说,移动台产生是否合理与基站的切换方式下,上述在扇区内产生的位置是合理的.但在后一种切换的方式下,还应考虑阴影衰落的效果,即当移动台到所属基站比到任一干扰基站的路径增益要小时,重新启动步骤(1).本文考虑到CDMA系统中用户较多,减少仿真计算量,故仅考虑了基于几何切换的情况.在对于给定的角度扩散,按式(1)随机地产生矢量信道.对于来自邻小区的干扰用户或基站,其信号的入射角近似为零.
  (2)利用上行信道的数据,为六干扰扇区(2a,3a,4b,5b,6c,7c)的每一用户计算阵列相关矩阵和相对干扰总量.进一步利用式(16)计算发送加权系数.
  (3)计算扇区1a中一个用户接收到的信号功率和干扰总和.图3给出了当用户数N=20时,角度扩散Δ=5和Δ=20时的信噪比的累积分布函数.本文中的数据是重复上述仿真三步骤2000次得到的.其它仿真参数:fd=50Hz,处理增益G=128,符号周期Ts=0.0001,相关矩阵是用50个符号平均而得,所需η=7dB.从图中可以看出,最小相对干扰法的性能要比最大阵列增益法(同单小区的波束形成)的性能好得多.当角度扩大时,两种方法的性能都有相当大的提高.这有以下几个原因:1)由于下行链路是同步发送的,同小区同频干扰被忽略.2)邻小区来的干扰信号的角度扩散几乎为零.因此,随着邻小区用户的角度扩散的增大,用户受其它六个基站的干扰越小.图4给出了角度扩散Δ=10度,系统在不同用户数时的中断率曲线.显然,随着用户数的增加,性能变差.同时,两种方法的性能接近.这是因为用户数的增加,干扰的总效果等同于白高斯噪声,由这两种方法确定的加权系数相近.

图3 输出信噪干扰比的累积概率分布函数(a)角度扩散Δ=5度(b)角度扩散Δ=20度

图4 下行链路的中断率随用户数的变化曲线

七、结  论
  在频分双工的CDMA系统中,下行链路的波束形成技术是智能天线应用于基站的一个难点.下行链路的加权系数与下行信道的相关矩阵相关,而不是瞬时阵列响应矢量,而前者可由上行信道的相关矩阵直接或变换得到.加权系数的最终确定与采用的准则有关.最小相对干扰方法由于考虑了邻小区的干扰,获得了比最大阵列增益方法好得多的性能.当然,当用户数较多时,两者性能接近,而前者的计算量要大得多.值得指出的是当总的干扰等效于白高斯噪声时,发送天线阵列的主要任务是如何在频率非选择性信道下,提供分集效果.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top