2DPSK信号数字化解调技术研究
图1.1 软件无线电结构框图
软件无线电主要有天线、射频前端、宽带A/D-D/A转换器、通用和专用数字信号处理器以及各种软件组成。软件无线电的天线一般要覆盖比较宽的频段,例如1MHz~2GHz,要求每个频段的特性均匀,以满足各种业务的需求。例如,在军事通信中,可能需要VHF/UHF的视距通信、UHF卫星通信,HF通信作为备用通信方式。为便于实现,可在全频段甚至每个频段使用几付天线,并采用智能化天线技术。
射频前端在发射时主要完成上变频、滤波、功率放大等任务,接受时实现滤波、放大、下变频等功能。在射频变换部分,宽带、线性、高效射频放大器的设计和电磁兼容问题的处理是比较困难的。当然,如果采用射频直接数字化方式,射频前端的功能可以进一步简化,但对数字处理的要求提高。要实现射频直接带通采样,要求A/D转换器有足够的工作带宽(2GHz以上),较高的采样速率(一般在60MHz以上),而且要有较高的A/D转换位数,以提高动态范围。目前8位A/D转换器的工作带宽已做到1.5GHz以上。
模拟信号进行数字化后的处理任务全由DSP软件承担。为了减轻通用DSP的处理压力,通常把A/D转换器传来的数字信号,经过专用数字信号处理器件(如数字下变频器DDC)处理,降低数据流速率,并把信号变至基带后,再把数据送给通用DSP进行处理。通用DSP主要完成各种数据率相对较低的基带信号的处理,例如信号的调制解调,各种抗干扰、抗衰落、自适应均衡算法的实现等,还要完成经信源编码后的前向纠错(FEC)、帧调整、比特填充和链路加密等算法。由于DSP技术和器件的发展,高速、超高速的数字信号处理器不断涌现,如TMS320C6X,ADSP21160等,DSP已能基本满足软件无线电的技术需求。如果采用多芯片并行处理的方法,其处理能力还将大大提高。
软件无线电的结构基本可以分为3种:射频低通采样数字化结构、射频带通采样数字化结构和宽带中频带通采样数字化结构,如图1.2~图1.4所示。
图1.2 射频低通采样数字化的理想软件无线电结构
射频低通采样数字化的软件无线电,其结构简单,把模拟电路的数量减少到最低程度,如图1.2所示。从天线进来的信号经过滤波放大后就由A/D进行采样数字化,这种结构不仅对A/D转换器的性能如转换速率、工作带宽、动态范围等提出了非常高的要求,同时对后续DSP或ASIC(专用集成电路)的处理速度要求也特别的高,因为射频低通采样所需的采样速率至少是射频工作带宽的2倍。例如,工作在1MHz~1GHz的软件无线电接收机,其采样速率至少需要2GHz,这样高的采样率,A/D能否达到暂且不说,后续的数字信号处理器也是难以满足要求的。图1.3所示的射频带通采样软件无线电结构可以较好的解决上述射频低通采样软件无线电结构对A/D转换器、高速DSP等要求过高,以至无法实现的问题。
图1.3 射频带通采样软件无线电结构
这种射频带通采样软件无线电结构与低通采样软件无线电结构的主要不同点是,A/D前采用了带宽相对较窄的电调滤波器,然后根据所需的处理带宽进行带通采样。这样对A/D采样速率的要求就不高了,对后续DSP的处理速度也可以随之大大降低。但是需要指出的是,这种射频带通采样软件无线电结构对A/D工作带宽的要求(实际上是对A/D中采样保持器的速度要求)仍然是比较高的。
宽带中频带通采样软件无线电结构与目前的中频数字化接收机的结构是类似的,都采用了多次混频体制或叫超外差体制,如图1.4所示。这种宽带中频带通采样软件无线电结构的主要特点是中频带宽更宽(例如20MHz),所有调制解调等功能全部由软件加以实现。中频带宽是这种软件无线电与普通超外差中频数字化接收机的本质区别。显而易见,这种宽带中频带通采样软件无线电结构是上述三种结构中最容易实现的,对器件的性能要求最低,但它离理想软件无线电的要求最远,可扩展性、灵活性也是最差的。
图1.4 软件无线电的中频数字化结构
1.2软件无线电中的调制解调技术
1.2.1 软件无线电中的调制解调问题
为了能够进行无线传输以及达到多路复用、提高抗噪声的目的, 在发射端需要用代表信息的基带信号(模拟或数字的低通信号)去控制载波的参数变化, 这就是调制; 在接收端则需要从调制信号中恢复原来的基带信号, 这就是解调。已经有许多不同类型的调制方式可以适应不同的需要。
在软件无线电系统中, 调制和解调都是用程序来实现的(也称为全数字化调制解调)。要编写出各种类型调制信号的调制解调软件, 关键是确定信号处理算法。可以利用 FPGA(现场可编程逻辑器件)来实现需要的调制解调算法, 其计算速度比 DSP 更快, 但是灵活性及控制功能较差, 需要与 DSP 或单片机配合使用。
建立调制解调算法及程序的一条途径是把模拟电路的工作原理软件化[2]。比如要对 AM信号进行相干解调, 或建立载波同步乘法器、低通滤波等软件模块的做法虽然可行, 但是计算量很大。实际上, 根据软件无线电的特点, 可以建立与调制解调电路工作原理有所不同的调制解调算法。
图 1.5为 SDR 接收机中广泛使用的数字正交解调方案。这是一个具有通用性的解调模型, 对不同方式的调制信号只需要设计相应的基带解调算法。对于 AM 信号, 基带解调算法为 A(n) =(I(n) +Q(n) ) 。对 LPF 的输出进行数据抽取是因为基带信号 I、Q 需要的采样率远低于对调制信号的采样率。这种解调方案利用软件中可以实现的平方和开方运算而免去了复杂的载波同步过程,不仅减少了计算量, 也避免了因载波同步误差而引起的解调误差 (相位同步误差和比较小的频率同步误差都不影响解调效果)。因为仍然是相干解调, 所以这种解调方案具有良好的抗干扰性能。
图1.5 正交数字化解调器
- 基于Zigbee技术家用无线网络的构架(12-14)
- 无线通信领域中的模拟技术发展趋势(蜂窝基站)(09-22)
- 第四代移动通信系统中的多天线技术(08-05)
- 移动WiMAX 802.16 Wave2的技术特点(02-04)
- Wi-Fi的最新技术进展及未来应用方向(03-16)
- UWB超宽带传输技术及其应用简析(03-18)