基于DDS的励磁恒流源设计
2.3 幅度控制 在对励磁信号源做硬件系统测试时,首先完成系统硬件连接,并加载程序,设定输出信号频率为1 MHz,示波器测得实际输出波形如图5所示。在Modelsim环境下仿真和在硬件平台上测试,结果表明励磁信号源可获得较好的设置波形,可以应用于磁性材料的测试中。
本设计幅度控制电路采用调节DAC参考电压的数字化控制方法,采用两个D/A级联的方式,数模转换器DAC2采用外部可变基准源,通过改变基准源的值来改变输出的满幅度电流值,该可变基准源通过DAC1产生。DAC1的基准电压采用输出电压为1.25 V精密电压基准芯片提供,设DAC1的幅度输出字为N1,则DAC1的参考电压为
设DAC2的数字输入字为N2,则经电流/电压转换后的输出电压为
2.4 人机交互
为方便快捷地控制DDS的频率字输入和幅度控制,本设计采用单片机来实现对DDS信号发生器的控制。DDS的频率字和幅度数据字位较多,而单片机输出端口位数有限,所以单片机与FPGA之间的通信采用SPI(Serial Peripheral Interface,串行外设接口)方式,单片机将控制命令字传送给FPGA。同时,为了输入控制方便,添加了键盘和显示系统。
3 数字闭环控制系统的实现
设计的励磁恒流源主要为磁性测量仪器提供激励电源,因而对其精度和稳定性要求高,采用电流控制型的控制策略进行闭环控制,结构框图如图3所示。励磁电流幅度调整时,首先对励磁电流进行多周期采样,然后计算其有效值,并与输入设定值相比较,若误差ε在允许范围之外,则根据误差的实际情况,通过单片机内增量式PID算法得出了一个新的控制量,传送给FPGA控制幅度调节经低通滤波器滤去高频成分,再经功率放大,得到高精度的励磁电流。
在Altera公司的QuartusⅡ环境下编译完成,采用自上而下的设计方法,即先从系统总体要求出发将设计内容细化,最后完成系统硬件的整体设计。完成DDS设计后,通过编写Testbench在Modelsim进行仿真。在QuartusⅡ中,设定输出信号频率为1 MHz,经过50 μs后改变为500 kHz进行仿真,其仿真结果如图4所示。在Modelsim中生成的仿真数据经验证完全正确,满足设计需求。
运用Verilog硬件编程语言结合DDS技术,利用FPGA器件强大的硬件功能,提高了系统集成度,实现了输出信号相对带宽宽、稳定性好;其相位累加器在一定系统时钟和累加器位宽条件,输出信号分辨率越小,频率控制字的传输时间以及器件响应时间都很短,使输出信号频率切换时间较短,可以达到ns级,且频率变化时,相位保持连续,系统采用闭环控制,励磁电流输出精度高,调节速度快。对磁性材料测量仪所要求的励磁信号源而言,本设计不但满足所有技术指标,而且集成度高、体积小、显著地降低了成本。
- 直接变频接收机设计可实现多标准/多频带运行(10-11)
- 基于蓝牙芯片的无线通信模块设计与开发(02-03)
- 无线通信网络设计与现场测试(10-10)
- WiMAX数据传输加密方案设计与实现(05-25)
- 高性能TD-SCDMA接收机的设计(03-15)
- 初步设计WiMAX射频系统(03-29)