微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 无线通信网络设计与现场测试

无线通信网络设计与现场测试

时间:10-10 来源:mwrf 点击:

  为了能够像有线通信网那样让通信用户方便地接入因特网和实现多媒体通信业务,无线通信网也要建成宽带网和提供良好的业务质量(QoS),以适应移动通信发展的要求。无线通信所使用的无线电频段一般在2-5GHz范围,以期取得较好的电波传播特性和较低的射频设备成本。这样宽带的光线通路一般是非视距传输的信道(NLOS),必须能够免予遭受时间和频率的选择性衰落的损害。

  第四代蜂窝网4G将是满足这些要求的宽带无线通信网。它们应能在蜂窝区范围内有良好的覆盖面,每一区内至少有90%的移动用户对通信满意,而且有99.9%的传输可靠性,数据通信的速率峰值可以高于1Mb/s,具有较高的频谱利用效率,大于4b/s/Hz。为了满足这些较高的要求,最近有研究单位采取了两种技术:一是“多输入和多输出天线”MIMO,二是“正文频分多路调制”OFDM。

  在发送端和接收端各设置多重天线,可以提供空间分集效应,克服电波衰落的不良影响。这是因为安排恰当的多副天线提供多个空间信道,不会全部同时受到衰落。在上述具体实验系统中,每一基台各设置2副发送天线和3副接收天线,而每一用户终端各设置1副发送天线和3副接收天线,即下行通路设置2×3天线、上行通路设置1×3天线。这样与“单输入/单输出天线”SISO相比,传输上取得了10~20dB的好处,相应地加大了系统容量。而且,基台的两副发送天线于必要时可以用来传输不同的数据信号,用户传送的数据速率可以加倍。

  正交频分多路OFDM系统优于传统单个载波之处,是因为一个宽带信号分在多个窄带载波传送,可以避免每载波经受不同的多途径传播影响,又可以省掉复杂的均衡器设施,这就有利于较高数据速率的传送。如OFDM采用一些编码和穿插的措施,它还能起到频率分集的作用。OFDM系统一般要求发送端和接收端利用“快速傅氏变换”FFT。

  还有一些重要设计是自适应调制和编码,它容许不同的数据速率指定给不同的用户,依它们的通路情况而定。由于通路情况随时间变化,接收机收集一套通路统计特性,供发送端和接收端使用,使调制编码、信号带宽、信号功率、预选周期、通路估计滤波器和自动增益控制等系统参数最佳化。当然,还必须有效地设计“媒介接入控制”MAC,以期在有损耗的无线通路上取得可靠的传输性能,让TCP/IP规约有效地运用,这里可考虑“自动重复传输和分层”措施ARQF。这是在发送端把各数据分组再分成较小的分组,依次在通路上向前传输。如果在接收端有一小分组没有正确送到,就通知发送端重新再发。实际上,这种ARQ的作用相当于“时间分集”,藉以克服噪声、干扰和衰落等不良影响。业务质量QoS总的目的是要可靠地取得每一通信用户长期使用感到满意。

  一、MIMO-OFDM设计要素

  宽带无线通信网的信号传送首先遇到的问题是多途径电波传播。就是说,蜂窝网基台向移动用户终端发送的无线电波,常常遇到许多不同的障碍物,诸如高楼建筑、大树、低层住房以及汽车等等的折射,先后到达接收终端。这些都是复杂的“非视距”NLOS传播,而不是单纯的点与点间的视距LOS传输。因此,在设计无线网时,应根据这些非视距传播的特点,采取相应有效的对策。

  特别对于通路色散、k因数、多普勒、交叉偏振、天线相关性等等,应加以密切注意,需要具体考虑射频及硬件,数/模和模/数转换器和其时钟、升频和降频转换振荡器、以及各种器件的线性和动态范围等问题。在非视距通路,因传输路程中近的和远的建筑物都会对无线电波产生反射,到了接收端就会引起通路色散。它由根均方时延分布表示,随距离而加大。它随着环境、天线束射宽度和天线高度而变化,典型的色散值是在0.1~5μs范围以内。这类无线通路的衰落信号大小是依从“赖斯”(Rice)分布规律,取决于固定通路分量功率Pc与散射通路分量功率Ps两者之比,Pc/Ps,称为“赖斯”k因数。Pc=O即k=0时发生的是最坏的衰落,其分布称为“赖斯”分布。K因数是系统设计的重要参数,因为它与一般深度衰落的概率有关。为了可靠的通信,不论固定的、还是移动的通信系统,在设计时都应考虑这种最严重的“瑞利”(RayLeigh)衰落。

在固定无线通路和移动无线通路都会出现多普勒(Doppler)现象,但两者的多普勒频谱不同。固定无线通路的多普勒频率范围为0.1-2Hz,其频谱形状近于指数律或圆形角。而在移动无线通路,多普勒频率约100Hz,并且具有“杰克”(Jake)频谱。所谓交叉偏振鉴别XPD,是指同类偏振与交叉偏振两种平均接收功率之比。XPD表示两种利用不同偏振取向的传输通路的间隔。XPD越大,则两个通路耦合的能量越校传输距离越长,XPD系统都

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top