微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > ADC驱动器或差分放大器设计汇总

ADC驱动器或差分放大器设计汇总

时间:07-31 来源:互联网 点击:

于RG乘以求和节点电容。

PCB版图是设计中最后的必要步骤之一。遗憾的是,它也是设计中最容易被忽视的步骤之一,即使性能高度依赖于版图设计的高速电路也是如此。马虎或拙劣的版图设计可能降低一个高性能设计的性能,甚至使它不能工作。虽然本文无法涵盖正确高速PCB设计的所有方面,但还是要介绍一些关键点。

寄生成分将损害高速电路的性能。寄生电容是由元器件的焊盘、走线、地平面或电源平面引起的。没有地平面的长走线将形成寄生电感,进而导致瞬态响应中的振铃和其它不稳定现象。寄生电容在放大器的求和节点处特别危险,因为它会在反馈响应中引入一个极点,造成尖峰和不稳定。一种解决方案是确保ADC驱动器安装和反馈元件焊盘下方区域的所有电路板层都是干净的地和电源平面。

要使有害寄生电抗最小,首先要使所有走线尽可能短。RF-4印制板的外层50Ω走线产生的寄生参数大约为2.8pF/英寸和7nH/英寸。内层50Ω走线的寄生电抗将在此基础上增加约30%。还要确保在长走线下方有地平面,以使走线电感最小。保持短小的走线有助于减小寄生电容和寄生电感——并保持设计的完整性。

电源旁路是版图设计中另一个重要的考虑因素。确保电源旁路电容和VOCM旁路电容尽可能靠近放大器引脚放置。另外,在电源上使用多个旁路电容有助于确保为宽带噪声提供低阻抗路径。图21给出了一个带旁路和输出低通滤波器的典型差分放大器原理图。低通滤波器用于限制进入ADC的带宽和噪声。理想情况下,电源旁路电容回路靠近负载回路,这有助于减小地平面中的环流,从而改善ADC驱动器性能(图22a和图22b)。

图21:带电源旁路电路和输出低通滤波器的ADC驱动器。

使用地平面和一般的接地技巧是一个具体而复杂的课题,不在本文讨论的范围之内。不过有几个要点需要指出,见图22a和图22b。首先,只在一个点将模拟和数字地连接在一起,记住只是单点接地。这样做可以使地平面中模拟和数字电流的交互作用最小,而这种交互最终将导致系统中产生“噪声”。另外,要将模拟电源终接到模拟电源平面,数字电源终接到数字电源平面。对于混合信号IC,要将模拟回路终接到模拟地平面,将数字地回路终接到数字地平面。

图22(a):器件侧。(b):电路侧。

图23:混合信号的接地方式。

我们希望当您用ADC驱动器进行设计时这里提供的材料有助于您更加全面地考虑众多必要因素。理解差分放大器——并在项目开始时就留意ADC驱动器设计的细节——将使设计过程中发生的问题最少,并使您远离ADC驱动器故障。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top