微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 航天器大功率DC-DC变换器热仿真分析

航天器大功率DC-DC变换器热仿真分析

时间:08-21 来源:中电网 点击:

  引言 

  随着电子技术的迅猛发展,电子设备的功率密度不断提高。高功率密度带来的高温对大多数电子元器件将产生严重的影响,它会导致电子元器件的失效,进而引起整个设备的失效。因此电子设备的热设计在整个产品的设计中占有越来越重要的地位,传统的热设计方法已经很难适应发展的需要。为了减少设计成本、提高产品的一次成功率,改善电子产品的性能,热仿真技术越来越普遍的应用于电子设备的热分析过程。设计人员借助热仿真可以减少设计、生产、再设计和再生产的费用,模拟特殊工作环境中的边界条件,缩短高性能、高可靠度电子设备的研制周期。

  1 航天器大功率DC-DC变换器热设计要求

DC-DC变换器是航天器在地面测试和在轨运行的各个阶段将太阳能或核能一次母线电压变换成二次母线电压或航天器内各种电子设备所需的电压,并稳定、可靠地供给航天器内各种用电设备及有效载荷相应工作电流的重要设备。随着我国空间事业的飞速发展,尤其是高轨道、大容量、长寿命卫星,载人飞船及空间站相关技术的发展使航天器所需供电功率逐渐增大,大功率的DC/DC电源将扮演日益重要的角色,其热设计直接关系到整个系统的可靠工作。航天器大功率DC-DC变换器具有散热条件恶劣、高热耗等特点,发热量集中,本身热耗分布也不均匀,由于空间电子产品散热的特殊性,对电源散热方式更有特殊的要求。

航天器大功率DC-DC变换器中的功率MOSFET管、二极管、高频变压器是主要的发热器件,温度过高会使电力电子器件特性变差,工作不稳定,甚至损坏;温度超过居里温度时磁芯的磁状态由铁磁性转变成顺磁性,损坏高频变压器,进而导致DC-DC变换器损坏。航天器大功率DC-DC变换器热设计的目的是在无对流传热的空间环境下控制电子设备内部所有电子元器件的温度,使其在设备所处的工作环境条件下不超过规定的最高允许温度。

  2 温度参数获得的几种方式

电子设备热设计的首要问题即是温度参数的获取。温度参数的获取按测温方式可分为接触式和非接触式两大类。

  2.1 接触式的温度参数获取方式

接触式温度参数获取原理简单、测量精度较高;但因测温元件与被测介质需要一定时间进行充分的热交换已达到测试所需的热平衡,所以存在测温的延迟现象,同时测温元件会不可避免的从器件上吸走部分热量,测温元件通电测量时自身会产生部分热量,从而对测试结果有一定的影响。

接触式的温度参数获取方式经常使用的测温元件有以下几种:

a.热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠等特点。

b.热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:测量范围广。常用的热电偶从-50~+1600℃均可连续测量;构造简单,使用方便。

c.热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。

通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。铂电阻传感器有良好的长期稳定性,典型实验数据为:在400℃时持续300小时,0℃时的最大温度漂移为0.02℃。

按IEC751国际标准,温度系数TCR=0.003851,Pt100(R0=100Ω)、Pt1000(R0=1000Ω)为统一设计型铂电阻。常规产品的测试电流Pt100为1mA,Pt1000为0.5mA,实际应用时测试电流不应超过允许值。温度系数TCR=(R100-R0)/(R0×100),其中:

温度/电阻特性:



 

  2.2 非接触式的温度参数获取方式

非接触式的温度参数获取方式主要有数值计算法、红外摄像法等方式。其中数值计算法主要依靠经典结温公式:Tj=TA+PDθJA(即器件结温Tj等于环境温度TA加上器件功耗PD与器件热阻θJA的乘积)来计算器件结温;或利用PN结上施加恒流源后,结电压随温度的变化大约-1mV/℃~-2mV/℃,来估箅器件结温。

红外摄像法是用红外摄像机来拍摄物体的红外照片(可以是某一瞬间的照片也可以是一段时间内的连续影像),并对照片进行分析,将目标各部分射出的红外辐射转换成肉眼可见的光学信号,从而得出物体表面温度分布的非接触式的温度参数获取方式。通过热辐射原理来测量温度,测量元件不需要与被测介质接触,不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的表面发射率、测量距离、空间环境等外界因素的影响较大。

图2.2.1为采用测温范围-20℃~+400℃的IR913A型红外热成像仪采集的某航天器大功率DC-DC变换器

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top