微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一种分数阶微分IIR滤波器的设计方法和改进

一种分数阶微分IIR滤波器的设计方法和改进

时间:04-24 来源:互联网 点击:

从图2中可以看出,基于Rectangular滤波器的幅度特性最好,但相位特性明显比另两种算子的差。Tustin的优点在于其相位特性非常好,相位曲线绝大部分区域都与理想频率响应相位曲线重合。Tustin和Sirepson有很强互补性。因为两者在低频的表现都比较好,虽然在高频都有明显误差,但两者的幅度曲线分别位于理想频率曲线的上下两侧。因此,这里认为通过这3种算子的相互结合,可以得到一种新的、频率特性更好的微分算子。

2 通过内插结合形成新分数阶微分滤波器
2.1 基于Rectangular算子和Tustin算子内插结合的分数阶微分滤波器
通过观察发现矩形(Rectangular)滤波器和梯形(Tustin)滤波器分别具有最好的幅频和相频特性,因此将这两种滤波器通过内插结合,可获得更好的近似理想积分器。
由于微分和积分的互逆性,首先推导新的积分算子HA(z)。用下标A表示结合后积分器,用下标R表示矩形积分器,用下标T表示梯形积分器,其积分算子的传输函数由Rectangular算子和Tustin算子按3:1的比率结合获得。积分器传输函数如下所示:


其零点不在单位圆内将零点z=一7映射到z=一1/7,通过乘以7对幅度进行相应补偿,获得最小相位积分器如下:


下面是T=O.001 s时,使用该算子实现0.5阶微分的IIR分数阶微分滤波器传递函数GvAn(z):


2.2 基于Tustin算子和Simpson算子内插结合的分数阶微分滤波器
同样通过观察发现Tustin算子和Simpson算子虽然在高频都有明显误差,但两者的幅度曲线分别位于理想频率曲线的上下两侧,以期通过内插结合相互抵消,而获得性能更好的滤波器。新的积分算子HB(z)传输函数通过梯形(Tustin)算子和辛普森(Simpson)算子按2:3比例结合获得。


圆内。为了构造最小相位系统,将零点r2映射到其倒数r1上。同时为了使幅度保持不变,引入补偿因子一r2。获得的积分算子如下:


积分算子的极点是1和一1,在单位圆上,不满足系统稳定性,但经过后面连续分数扩充方法截断后,可以使极点都在单位圆内。
下面是T=O.001 s时,使用新算子B实现0.5阶微分的IIR分数阶微分滤波器函数GvBn(z):


2.3 基于Rectangular算子和Simpson算子内插结合的分数阶微分滤波器
同样将Rectangular算子和Simpson算子结合也可以形成新算子。新的积分算子HC(z)传输函数通过矩形(Rectangular)算子和辛普森(Simpson)算子按5:3比例结合获得:

相位系统,将零点r2映射到其倒数1/r2上。同时为了使幅度保持不变,引入补偿因子一r2。获得的积分算子
如下:


积分算子的极点是1和一1,在单位圆上,不满足系统稳定性,但经过后面连续分数扩充方法截短后,可以使极点都在单位圆内。
下面是T=0.001 s时,使用新算子C实现0.5阶微分的IIR分数阶微分滤波器函数GvCn(z):


图3显示的是通过相互结合的3种新算子的分数阶微分滤波器频率响应。可以看出,新算子中A相比B和C具有更好的频率特性。其幅度特性曲线从低频到高频都基本接近理想频率响应曲线。新算子中A的相位特性随频率的增大,相位延迟近似线性增加,可以引入分数阶延迟滤波器来进一步改进相位特性。

3 结 语
主要从频域角度出发,对分数阶微分IIR滤波器的设计以及实现进行了深入分析。分数阶微分IIR滤波器的实现有两个重要的步骤。首先,找到合适的微分算子,所选算子的频率响应逼近理想分数阶微分频率响应的程度直接影响到所实现滤波器的表现;其次,要使用合适的展开方法把传输函数从分数阶形式转化成整数阶滤波器的形式,连续分数扩充(CFE)方法是一种广泛使用并有良好效果的方法。这里通过将几种典型算子进行内插结合获得了一种整体更接近理想频率响应的算子,使用连续分数扩充(CFE)方法,完成了分数阶微分IIR滤波器的数字实现,通过新算子频率响应的对比分析,分数阶微分滤波器的性能获得了明显的提高。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top