微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 集成专用驱动器在开关电源中的应用

集成专用驱动器在开关电源中的应用

时间:04-17 来源:互联网 点击:

随着各种用电设备的飞速发展,特别是通讯产业的突飞猛进,对电源不断地提出新的要求:电功率要求不断加大;电压调节范围要求越来越大;电流的稳定性要求越来越高;纹波与噪声要求越来越低;体积要求越来越小等。为了适应这种现状,开关电源的产生与发展成为了必然。

由于远程供电的需要,需研制一台高压大功率直流开关电源。采用开关电源主要是因为开关电源功率可以做大、电压可以做高、电压调节范围可以做广。但是在整个研制过程中发现驱动电路是比较困难且重要的环节。目前开关电源的国内外发展速度很快,技术非常成熟。20世纪90年代以来,高频变换技术飞速地发展,不断涌现了新型电力电子器件,高智能化IC和新电路拓扑,创造出10年前意想不到的许多新型稳压电源。现代电源技术正以空前的规模改造着传统的旧式电器设备,广泛进入了国民经济和人类生活的各个领域。

l驱动电路的功能与特点

开关电源的形式与种类很多,尽管各种不同的开关电源能达到的性能指标也各不相同,但总是由以下几个部分组成:

(1)控制单元

一般都是由专门的集成电路担当这部分工作,也有用单片机、DPS作为控制单元核心的,视具体需要而定。

(2)功率元件

目前一般使用IGBT和MOSFET;一般高频中小功率情况下用场效应管,大功率情况下用IGBT,其电路结构上大同小异,栅极高电平(一般是10~20 V,常用的是15 V)导通,低电平(-5~0 V)截止。其作用是开关电源的核心。

(3)驱动电路

这部分是开关电源的灵魂,是连接控制单元与功率管的桥梁。控制单元出来的电平一般无法直接驱动功率管,需要有一个电平的转换及电流驱动;对于驱动电路而言,功率管的栅极即为负载,一般的功率管栅源之间有一个寄生电容,故驱动电路的负载是一个容性负载,若驱动电流不够,或提高频率,方波会产生畸变,无法达到设计目的。因此功率电子的驱动是整个设计的重点,也是难点。

开关稳压电源中的功率开关管要求在关断时能迅速关断,并能维持关断期间的漏电流近似等于零;在导通时要求能迅速导通,并且维持导通期间的管压降也近似等于零。开关管趋于关断时的下降时间和趋于导通时的上升时间的快慢是降低开关晶体管损耗功率,提高开关稳压电源效率的主要因素。要缩短这两个时间,除选择高反压、高速度、大功率开关管以外,主要还取决于加在开关管栅极的驱动信号。驱动波形的要求如下:

①驱动波形的正向边缘一定要陡,幅度要大,以便减小开关管趋于导通时的上升时间;

②在维持导通期间内,要能保证开关管处在饱和导通状态,以减小开关管的正向导通管压降,从而降低导通期间开关管的集电极功率损耗;

③当正向驱动结束时,驱动幅度要减小,以便使开关管能很快地脱离饱和区,以减小关闭储存时问;

④驱动波形的下降边缘也一定要陡,幅度要大,以便减小开关管趋于截止时的下降时间。理想的驱动波形如图1所示。其中图1(a)是漏极电压和电流波形图,图1(b)是栅极驱动信号波形图。

2 IR2110栅极驱动抗干扰技术

IR2110是一种双通道高压、高速电压型功率开关器件栅极驱动器,具有自居浮动电源,驱动电路十分简单,只用一个电源可同时驱动上下桥臂。但是IR2110芯片有他本身的缺陷,不能产生负压,在抗干扰方面比较薄弱,以下详细结合实验介绍抗干扰技术。

2.1 芯片功能简介

IR2110包括:逻辑输入、电平转换、保护、上桥臂侧输出和下桥臂侧输出。逻辑输入端采用施密特触发电路,提高抗干扰能力。输入逻辑电路与TTL/COMS电平兼容,其输入引脚阈值为电源电压Vdd的10%,各通道相对独立。由于逻辑信号均通过电平耦合电路连接到各自的通道上,允许逻辑电路参考地(VSS)与功率电路参考地(COM)之间有-5 V~+5 V的偏移量,并且能屏蔽小于50 ns脉冲,这样便具有较理想的抗噪声效果。两个高压MOS管推挽驱动器的最大灌入或输出电流可达2 A,上桥臂通道可以承受500 V的电压。输入与输出信号之间的传导延时较小,开通传导延时为120 ns,关断传导延时为95 ns。电源VCC典型值为15 V,逻辑电源和模拟电源共用一个15 V电源,逻辑地和模拟地接在一起。输出端设有对功率电源VCC的欠压保护,当小于8.2 V时,封锁驱动输出。

IR2110具有很多优点:自举悬浮驱动电源可同时驱动同一桥臂的上、下两个开关器件,驱动500 V主电路系统,工作频率高,可以达到500 kHz;具有电源欠压保护相关断逻辑;输出用图腾柱结构,驱动峰值电流为2 A;两通道设有低压延时封锁(50 ns)。芯片还有一个封锁两路输出的保护端SD,在SD输入高电平时,两路输出均被封锁。IR2110的优点,给实际系统

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top