微波EDA网,见证研发工程师的成长! 2025婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳娼¢弻鐔告綇閸撗呮殸缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹帛閸旀洟骞栭銈囦笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷�01闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸屾矮澹曞┑顔结缚閸樠冣枍瀹ュ洠鍋撶憴鍕;闁告濞婇悰顕€宕堕澶嬫櫌婵犵數濮撮幊澶愬磻閹捐閿ゆ俊銈勮兌閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴欏灪閸嬨倝鏌曟繛褍鍟悘濠囨⒑閹稿海绠撴い锔诲灣缁顢涢悙瀵稿弳闂佺粯娲栭崐鍦偓姘炬嫹
首页 > 硬件设计 > 模拟电路设计 > 校准MAX9979引脚电子器件

校准MAX9979引脚电子器件

时间:01-04 来源:互联网 点击:

引言
MAX9979为高线性度、双通道、1.1Gbps引脚电子,集成了PMU和电平设置数/模转换器(DAC)。该器件共集成了28路16位DAC (每通道14路)。利用器件内部校准寄存器,可对每路施加电平DAC进行单独的增益误差和失调误差调整。这些寄存器允许MAX9979的电平在整个-1.5V至+6.5V工作范围内校准到优于5mV,本应用笔记将说明如何实现该校准。

缓冲器的增益误差和失调误差
MAX9979内部有许多单位增益缓冲器。如果没有经过校准,每个缓冲器都会产生失调和增益误差,图1所示为MAX9979内部一个缓冲器的结构图。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...
图1. MAX9979电平设置结构图

内部16位DAC输出驱动失调和增益校准单元的输入,校准单元用于对单位增益缓冲器的失调和增益误差进行校准。正是这种结构能够在MAX9979的整个工作范围内实现高精度、高线性度和低失调电平。

MAX9979数据资料给出了失调和增益校准寄存器说明,同时也介绍了如何通过内部串行接口对这些寄存器进行访问和编程。下面部分阐述如何使用MAX9979EVKIT进行校准,MAX9979 EV (评估)板提供了图片和实际结果(图2)。

利用MAX9979EVKIT校准MAX9979

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...

图2. MAX9979EVKIT

上图所示评估板通过图形用户界面(GUI)进行控制,该软件可从Maxim网站下载。

MAX9979EVKIT电路板设置
按照评估板手册提供的指令对评估板上电。
将DATA0引脚连接到0.8V。
将DATA0/引脚连接到0V。
将RCV0引脚连接到0V。
将RCV0/引脚连接到0.8V。
将高精密DVM连接到DUT0引脚。
装载GUI软件。
完成上述设置后,我们准备开始校准。启动GUI后可以看到图3所示界面。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...
图3. 启动后的MAX9979 GUI

点击DriveHi CH1/CH0快速启动,观察并验证连接到DUT0引脚的DVM可以测到3V电压。

校准VDH0的步骤
失调调整
始终在调整增益之前调整失调。
点击VDH0电压单元,将其复位到1.5V。这将使DUT0输出设置为+1.5V,该电压为-1.5V VDH0 +6.5V工作范围的中间值。设置VDL0为-2.0V,确保在VDH0逼近VDL0时,VDH0和VDL0之间的压差至少为0.5V。
用DVM检测DUT端的电压。该电压不是1.5V,相对于1.5V存在一个失调。
在两个方向上调整VDH0的失调滑动条,直到DUT端测量到的电压接近1.5V设置电压。至此,即已完成VDH0在MAX9979内部校准寄存器的失调校准电压编程。不再需要任何调整或移动失调滑动条。

增益调整
可以在多个点设置VDH0,调整增益校准。可以设置VDH0为-1.5V,调整增益滑动条,然后设置VDH0为+6.5V并验证测量电压。然而,在量程端点时具有非线性,当VDH0逼近VDL0时会产生最大线性误差。

最好的方法是保证器件一直工作在线性最好的区域,这种情况下,可以将VDH0设置在±1.5V之间。
VDL0设置为-2V,保持通过上述失调调整步骤设置的失调校准值。
设置VDH0为0V (偏离原始设置-1.5V)。
观察DUT测量值,调整增益滑动条(保证失调滑动条不动)直到DUT输出尽可能接近0V。
设置VDH0为3V (高于原始设置+1.5V)并观察DUT电压。
此时,读数应该非常接近3.000V。选择+1.5V作为中心点并对该中心点附近±1.5V进行增益调整。如果在VDH = 3V时的读数误差大于预期值(此时应该小于2mV),则重复步骤2至步骤5,使在0V和3V时的误差对称。
完成调整后,对VDH0从-1.5V至+6.5V进行扫描。画出编程电压和测量电压的误差偏差图。
设置VDH0 = +3V,VDL0 = -2V,在完成失调和增益校准后,GUI界面如图4所示。VDH0失调和增益设置可能与图示不同,该设置取决于被测试的特定器件。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...
图4. 校准后VDH0的失调和增益寄存器设置

校准前后VDH误差扫描
图5数据说明:

校准前失调电压为:
-1.5V = -27mV
+1.5V = +5mV
+6.5V = +54mV
校准后失调电压为:
-1.5V = -3mV
+1.5V = -0.1mV
+6.5V = +0.1mV
在-1.5V处的误差与VDH0逼近VDL0的程度有关。对增益的校准点应该选择在接近-1.5V和+6.5V。此时,在-1.5V处的误差将会减小,沿着扫描曲线达到+6.5V时误差会略微增大。

针对两个通道的每个电平重复进行校准步骤。校准比较器失调需要监测比较器输出并观察转换点,或通过外部器件将比较器置于伺服环中。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...
图5. 校准前后DUT0引脚处的DVH (典型值)的误差测量

保存校准寄存器设置
完成所有寄存器校准后,GUI接口如图6所示,所有失调和增益寄存器均设置在它们的校准值。除了经过校准的VDH0电平外,其它DAC值为假设数值;对器件进行校准,这些数据会随之更新。

注意我们只是观察了CH0页,在GUI设置中还有3个其它页面,用于CH0 PMU设置以及CH1的驱动器、PMU设置。完成所有校准后,全部失调和增益的DAC设置将显示在所有GUI页面。

这些设置只有在MAX9979上电时保持。如果MAX9979断电后重新上电,所有这些校准寄存器

闁诲繐绻愮€氫即銆傞懜鐢碘枖闁规崘灏欓悷褰掓煕閳哄喚鏀版い鏂垮瀵偄鈻庨幋鏃€鐓犻梺瑙勪航閸斿繐鐣烽敓锟�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top