电子器件MAX9979引脚的校准
引言
MAX9979为高线性度、双通道、1.1Gbps引脚电子,集成了PMU和电平设置数/模转换器(DAC)。该器件共集成了28路16位DAC (每通道14路)。利用器件内部校准寄存器,可对每路施加电平DAC进行单独的增益误差和失调误差调整。这些寄存器允许MAX9979的电平在整个-1.5V至+6.5V工作范围内校准到优于5mV,本应用笔记将说明如何实现该校准。
缓冲器的增益误差和失调误差
MAX9979内部有许多单位增益缓冲器。如果没有经过校准,每个缓冲器都会产生失调和增益误差,图1所示为MAX9979内部一个缓冲器的结构图。
图1. MAX9979电平设置结构图
内部16位DAC输出驱动失调和增益校准单元的输入,校准单元用于对单位增益缓冲器的失调和增益误差进行校准。正是这种结构能够在MAX9979的整个工作范围内实现高精度、高线性度和低失调电平。
MAX9979数据资料给出了失调和增益校准寄存器说明,同时也介绍了如何通过内部串行接口对这些寄存器进行访问和编程。下面部分阐述如何使用MAX9979EVKIT进行校准,MAX9979 EV (评估)板提供了图片和实际结果(图2)。
利用MAX9979EVKIT校准MAX9979
图2. MAX9979EVKIT
上图所示评估板通过图形用户界面(GUI)进行控制,该软件可从Maxim网站下载。
MAX9979EVKIT电路板设置
按照评估板手册提供的指令对评估板上电。
将DATA0引脚连接到0.8V。
将DATA0/引脚连接到0V。
将RCV0引脚连接到0V。
将RCV0/引脚连接到0.8V。
将高精密DVM连接到DUT0引脚。
装载GUI软件。
完成上述设置后,我们准备开始校准。启动GUI后可以看到图3所示界面。
图3. 启动后的MAX9979 GUI
点击DriveHi CH1/CH0快速启动,观察并验证连接到DUT0引脚的DVM可以测到3V电压。
校准VDH0的步骤
失调调整
始终在调整增益之前调整失调。
点击VDH0电压单元,将其复位到1.5V。这将使DUT0输出设置为+1.5V,该电压为-1.5V VDH0 +6.5V工作范围的中间值。设置VDL0为-2.0V,确保在VDH0逼近VDL0时,VDH0和VDL0之间的压差至少为0.5V。
用DVM检测DUT端的电压。该电压不是1.5V,相对于1.5V存在一个失调。
在两个方向上调整VDH0的失调滑动条,直到DUT端测量到的电压接近1.5V设置电压。至此,即已完成VDH0在MAX9979内部校准寄存器的失调校准电压编程。不再需要任何调整或移动失调滑动条。
增益调整
可以在多个点设置VDH0,调整增益校准。可以设置VDH0为-1.5V,调整增益滑动条,然后设置VDH0为+6.5V并验证测量电压。然而,在量程端点时具有非线性,当VDH0逼近VDL0时会产生最大线性误差。
最好的方法是保证器件一直工作在线性最好的区域,这种情况下,可以将VDH0设置在±1.5V之间。
VDL0设置为-2V,保持通过上述失调调整步骤设置的失调校准值。
设置VDH0为0V (偏离原始设置-1.5V)。
观察DUT测量值,调整增益滑动条(保证失调滑动条不动)直到DUT输出尽可能接近0V。
设置VDH0为3V (高于原始设置+1.5V)并观察DUT电压。
此时,读数应该非常接近3.000V。选择+1.5V作为中心点并对该中心点附近±1.5V进行增益调整。如果在VDH = 3V时的读数误差大于预期值(此时应该小于2mV),则重复步骤2至步骤5,使在0V和3V时的误差对称。
完成调整后,对VDH0从-1.5V至+6.5V进行扫描。画出编程电压和测量电压的误差偏差图。
设置VDH0 = +3V,VDL0 = -2V,在完成失调和增益校准后,GUI界面如图4所示。VDH0失调和增益设置可能与图示不同,该设置取决于被测试的特定器件。
图4. 校准后VDH0的失调和增益寄存器设置
校准前后VDH误差扫描
图5数据说明:
校准前失调电压为:
-1.5V = -27mV
+1.5V = +5mV
+6.5V = +54mV
校准后失调电压为:
-1.5V = -3mV
+1.5V = -0.1mV
+6.5V = +0.1mV
在-1.5V处的误差与VDH0逼近VDL0的程度有关。对增益的校准点应该选择在接近-1.5V和+6.5V。此时,在-1.5V处的误差将会减小,沿着扫描曲线达到+6.5V时误差会略微增大。
针对两个通道的每个电平重复进行校准步骤。校准比较器失调需要监测比较器输出并观察转换点,或通过外部器件将比较器置于伺服环中。
图5. 校准前后DUT0引脚处的DVH (典型值)的误差测量
- 校准MAX9979引脚电子器件(01-04)
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 利用阻性负载增强LNA稳定性(上)(11-19)
- 选择最佳的电压基准源(11-29)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...