微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 混频器设计中的关键技术研究

混频器设计中的关键技术研究

时间:09-27 来源:互联网 点击:

小,特别是交调互调干扰小,对滤波器的外围电路要求不高,电路比较简单。同时变频增益较高,且对输入的信号幅度要求不严格,既可以大信号工作,也可以小信号工作,因此动态范围大。这类混频器的缺点是噪声系数往往较大,工作频率不高,最高一般为几十兆赫兹,常常用于接收机的第二混频器。

采用二极管的混频器可以分为两大类:单端混频器和平衡混频器。单端混频器和平衡混频器的缺点是存在一定的变频损耗。单端混频器结构简单,工作的带宽较窄,往往需要较大的本振功率,且不能消除本振噪声,这种混频器目前已很少采用。平衡混频器工作带宽可以从几十千赫兹到几十千兆赫兹,动态范围较大,混频失真小(信号的偶次谐波被抵消,特别是二次谐波,所以等大大地降低输出组合频率的干扰)。同时,这种混频器很容易匹配,各个端口具有较高的隔离度(每个倍频程下降为5 dB)。此外平衡混频器的一个重要优点是可以抑制本振噪声,改善混频器的噪声性能,因此平衡混频器得到了广泛的应用。在选用平衡混频器时,应注意在满足需要的前题下,尽量选用本振电平低的平衡混频器,一方面是价格便宜,另外可以保证本振信号泄露很小,同时应保证本振电平比信号电平大10 dB左右。

3降低滤波器的设计难度

由前面分析可知,由于混频器非线性作用的结果,产生出大量的组合频率分量,这些频率分量中除了正常输出的中频信号频率外,往往还包括位于中频带宽范围附近的组合频率分量。如果这些不需要的组合频率距离中频带宽很近的话,则带通滤波器很难将其滤除,或者即使能够滤除也会由于对滤波器的带外抑制度要求太高而使滤波器的设计难度以及成本大大增加。因此,在设计混频器的时候,必须对混频过程中产生的组合频率分量进行充分地分析。为此,要选择合适的本振频率和信号频率,以使无用的组合频率分量,特别是低阶组合频率分量尽量远离带通滤波器的通带。

4结 语

设计混频器时,必须综合考虑各种因素对混频器性能的影响。除了前面提到的几个要求之外,设计中还必须确定混频器的封装形式、工作频率、价格等其他因素.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top