开放式控制平台及其在无人潜航器制导系统中的
无人潜航器UUV是一种主要以潜艇或水面舰艇为支援平台、能长时间在水下自主远程航行的智能化装置,可以携带多种专用设备或武器,执行特定的任务和使命。20世纪90年代,世界各主要海军国家开始关注UUV在军事领域的应用前景,并相继开发出了一批多用途的无人潜航器。与传统潜艇相比,无人潜航器具有使用灵活、隐蔽性强、适应复杂海况以及可有效减少人员伤亡的特点。因此,美国海军于1999年提出了一套完整的无人潜航器发展计划,开始大力发展军用UUV系统,并希望其能够达到与无人飞机相类似的多用途性和通用性。2005年1月,美国海军发布了新的《无人潜航器(UUV)总体规划》,该规划将无人潜航器提高到与无人机、无人战车和机器士兵研究同等重要的位置。
机动控制和制导技术是UUV的关键技术之一,自动化程度的高低直接决定UUV的整体性能。要求水下自主远距离航行时,在无人控制下,能自动收集并传送信息,探测、评估并主动规避威胁目标和障碍物;在出现不可预知情况及恶劣水文条件时,可根据任务目标、周围环境情况和剩余动力,迅速做出反应,自主决策,返回母舰或与其他平台合作,组成UUV编队,协同完成任务。
本文主要研究了OCP和SEC的基本结构、嵌入式中间件结构,结合OCP、嵌入式操作系统、实时网络等计算机技术和控制技术来分析UUV的制导系统,提出未来新型UUV制导系统一般性结构和设计的方法,实现控制算法和软硬件平台相结合的结构体系。该体系将会为开发新一代的UUV提供一个高技术的平台,并降低UUV开发的难度和费用。
1 OCP的基本结构和中间件技术
目前的自主航行器系统受到计算机技术、控制理论、网络通信技术和嵌入式系统的影响已经得到空前的发展和突破。其最显著的特点是系统越来越复杂,战术指标越来越高。任务的复杂性、环境的不确定性、系统内多硬件和多软件平台是目前UUV的最主要特征。这给UUV的开发带来非常大的困难,不但要求开发者有专业领域的知识,还要具备计算机操作系统和硬件的知识。如果计算机工程师向用户提供的平台包括硬件和嵌入式操作系统,并利用中间件技术隔离应用程序和操作系统,这样,UUV工程师就可以集中精力开发自己擅长的专业领域控制软件。
基于嵌入式系统的OCP技术在结构上与传统集中控制系统大致相同,其在操作系统之上设计有一层中间件,如图1所示。它将应用程序接口API(Application Programming Interface)与操作系统隔离,使得这种平台具备真正的开放式结构和可重新配置能力,并且适合多类型的硬件和软件平台。同时OCP的各控制单元在物理位置上可与测量变送单元和操作执行单元合为一体,可以在现场构成完整的基本控制系统。
对于开放式控制平台的无人潜航器制导系统,采用OCP的主要目的是将中间件技术引入到航行器处理系统中,包括UUV的航行管理、自动驾驶控制、系统存储器管理和武器发射控制等。
采用OCP中间件还包括:
(1) 运行时间结构和中间件。OCP使用中间件将各类不同的嵌入式系统综合在一起,控制各类软件的执行和通信。中间件的另一个重要任务是隔离应用程序和操作系统,使得用户开发应用程序时,与操作系统平台和硬件平台无关。
(2) 仿真环境。仿真环境则允许嵌入式系统在一个虚拟的环境中实现,例如读取航行器的各传感器信号,给执行机构发布执行指令等。
(3) 工具综合。工具综合提供给航行器开发者使用包括Matlab/Simulink等软件的接口,允许开发者更有效地使用 这些工具开发航行器的嵌入式软件,如快速控制原型(RCP)、硬件在回路仿真等设计手段。
目前OCP的中间件技术有多种选择,较多采用的是国际OMG(Object Management Group)组织推出的分布式对象计算标准CORBA(Common Object Request Broker Architecture)。但由于通用CORBA规范并不是针对分布式实时应用而制定的,因而缺乏对可预测性、包括时间的确定性、低延迟、QoS等应有的实时特性的支持。所以,需要将CORBA技术本身进行改进和扩展,以满足分布式实时应用的需要。本质上讲,实时CORBA系统是一个面向对象的分布式实时中间件,能够支持具有不同特性的分布式实时应用系统,具有较高的性能和有效控制系统资源的能力。
平台无关性、语言无关性和网络协议无关性是CORBA具有的三个重要特性,它的基础核心是ORB。正是利用了CORBA基于事件通信的技术实现了OCP内部的分布式处理和内部组件之间的通信,满足了UUV复杂系统的许多要求,例如:实时路径规划、混合系统的自主管理、结构的可重新动态配置以及对UUV传感器和执行器的实时触发等。
2 开放式无人潜航器制导系统控制平台
2.1 新型UUV制导系统结构及其特点
UUV制导系统的复杂性主要表现在目标和UUV本体运动信息的获取、自导律和控制律的产生、作战有效性和对抗决策等。UUV系统具有多CPU硬件平台和多操作系统软件平台,各平台的通信也具有多样性,即UUV是一种典型的异构网络平台。在参考文献[4]、[5]中提出了基于现场总线和嵌入式系统的UUV制导系统结构,可以实现制导大回路一体化,但系统开发复杂,对工程师的专家知识要求很高,不利于嵌入式技术在UUV中的应用。本文在参考文献[6]的基础上提出基于SEC和OCP技术设计新型开放式UUV制导系统,正是为了解决嵌入式技术在UUV中的应用瓶颈。首先涉及到的技术就是异构平台信息的统一管理和信息融合,以便能全息地利用各类信号,支撑制导全系统的有效和可靠地运行。
在UUV的设计中,微处理器、微控制器、数字信号处理器等得到普遍应用,并构成多种运算处理平台。有些使用传统的DOS操作系统,有些甚至不使用操作系统。这不但带来了诸如布线、屏蔽、抗干扰、隔离地等众多问题,而且无论从重量、电磁干扰、可靠性等方面都非常不利于UUV总体性能的提高,不利于UUV武器系统的研发和生产。
因此,本文提出的采用现场总线、嵌入式操作系统和OCP技术,构造UUV制导系统,是因为这种新型结构具有的结构可重新配置和软件的可重用性,可以从根本上解决以上难题。
2.2 基于OCP技术的UUV制导系统
在现代UUV的设计中,大多以控制系统为中心,完成信号的综合、判断,协调其他各系统的动作流程。这为现场总线、嵌入式操作系统和OCP技术的采用提供了很大的便利条件,其中基于现场总线和实时多任务嵌入式操作系统的控制节点结构、网络控制系统分析在参考文献[4-6]已经进行过研究,本文将从OCP技术的角度给出控制节点结构特点和性能。
图1表示了基于OCP的控制节点的典型结构。与参考文献[6]中图2结构的不同之处在于:在VxWorks操作系统和应用程序之间增加了OCP中间件层,并要求用户开发的应用程序也要按照面向对象技术和层次的概念来开发,使得应用程序与操作系统分离。其次该结构可以满足基于OCP技术的要求,包括实时性、高可靠性、系统的灵活性和系统的可重新配置等。在OCP中间件层中,要求系统开发商能够向用户提供与操作系统无关的标准应用程序接口(API)。API接口包括底层I/O驱动、操作系统的管理等。标准API接口可以保证应用程序与操作系统无关性,这样不但便于系统的开发,也便于今后操作系统的升级、应用程序的修改和升级。
开放式控制平台 软件使能控制 嵌入式操作系统 无人潜航器 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 利用GM6801实现智能快速充电器设计(11-20)