微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 新型高耐压功率场效应晶体管

新型高耐压功率场效应晶体管

时间:05-20 来源:互联网 点击:

摘要:分析了常规高压MOSFET的耐压与导通电阻间的矛盾,介绍了内建横向电场的高压MOSFET的结构,分析了解决耐压与导通电阻间矛盾的方法与原理,介绍并分析了具有代表性的新型高压MOSFET的主要特性。

关键词:内建横向电场;耗尽层;导通电阻;短路安全工作区

New Type of High Voltage MOSFET

CHEN Yong-zhen

Abstract:The contradiction between withstand voltage and on resistance of high voltage MOSFET is analyzed,Its struction with horizontal orientation electric field is introduced,the method and priciple of resolving the contradiction between withstand voltage and on resistance are construed and the main characterics of this new type of high power MOSFET with representativeness are presented.

Keywords:Horizontal orientation electric field; Exhausted layer; On resistance; SCSOA

1 引言

在功率半导体器件中,MOSFET以其高开关速度,低开关损耗,低驱动损耗等特点而在各种功率变换,特别是在高频功率变换中扮演着主要角色。但随着MOS耐压的提高,其导通电阻也随之以2.4~2.6次幂增长,其增长速度使MOSFET制造者和应用者不得不以数十倍的幅度降低额定电流,以折中额定电流、导通电阻和成本之间的矛盾。即便如此,高压MOSFET在额定结温下的导通电阻产生的导通压降仍居高不下,如表1所示。

表1管芯面积相近,耐压不同的MOSFET的导通压降和新型结构MOSFET的导通压降

型号 VDSS/V ID25℃/A ID100℃/A Rd(on)25℃/Ω Rd(on)150℃/Ω VDS/V(ID=ID(100))
IRFBG30 1000 3.1 2.0 5 13 26
IRFBF30 900 3.6 2.3 3.7 9.62 21.2
IRFBE30 800 4.1 2.6 3.0 7.65 19.1
IRFBC30 600 3.6 2.3 2.2 5.75 12.6
IRF830 500 4.5 3 1.4 3.64 10.9
IRF730 400 5.5 3.5 1.0 2.6 8.5
IRF634 250 8.1 5.1 0.45 1.15 5.6
IRF630 200 9.0 5.7 0.4 0.92 5.2
IRF530N 100 17.0 12 0.11 0.24 2.9
IRFZ34E 60 28.0 20 0.042 0.076 1.5
IRF23704 30 42.0 31 0.0125 0.02 0.62
SSP07N060C2 600 7.3 4.6 0.6 1.32 6.07
SSP06N80C2 800 6 3.8 0.9 2 7.6
IRFPS59N60C 600 59 37 0.045 0.126 4.66

从表1中可以看到,耐压500V以上的MOSFET在额定结温、额定电流条件下的导通压降很高,耐压800V以上的导通压降高得惊人。由于导通损耗占了MOSFET总损耗的2/3~4/5,而使其应用受到了极大限制。

2 降低高压MOSFET导通电阻的原理与方法

2.1 不同耐压的MOSFET的导通电阻分布

不同耐压的MOSFET,其导通电阻中各部分电阻所占比例也不同。如耐压30V的MOSFET,其外延层电阻仅占总导通电阻的29%;耐压600V的MOSFET的外延层电阻则占总导通电阻的96?5%。由此可以推断耐压800V的MOSFET的导通电阻将几乎被外延层电阻占据。

欲获得高阻断电压,就必须采用高电阻率的外延层,并增厚。这就是常规高压MOSFET结构所导致的高导通电阻的根本原因。

2.2 降低高压MOSFET导通电阻的思路

增加管芯面积虽能降低导通电阻,但成本的提高所付出的代价是难于接受的。

引入少数载流子导电虽能降低导通压降,但付出的代价却是开关速度的降低并出现拖尾电流,导致开关损耗增加,失去了MOSFET高开关速度的优点。

以上两种办法不能降低高压MOSFET的导通电阻,所剩的思路就是如何将阻断高电压的低掺杂、高电阻率区域和导电通道的高掺杂、低电阻率分开解决。如导通时低掺杂的高耐压外延层对导通电阻只能起增大作用而无其它作用。这样,是否可以将导电通道以高掺杂较低电阻率实现,而在MOSFET关断时,设法使这个通道以某种方式夹断,使整个器件耐压仅取决于低掺杂的N-外延层。基于这种思想1988年Infineon推出内建横向电场耐压为600V的COOLMOS,使这一想法得以实现。内建横向电场的高压MOSFET的剖面结构及高阻断电压低导通电阻的示意图如图1所示。


(a) 内建横向电场的高压MOSFEET剖面结构

(b) 垂直的N区被耗尽

(c) 导电沟道形成后来自源极的电子将垂直的N区中正电荷中和并恢复N型特征

图1 内建横向电场的MOSFET剖面,垂直N区被夹断和导通

与常规MOSFET结构不同,内建横向电场的MOSFET嵌入了垂直P区,将垂直导电区域的N区夹在中间,使MOSFET关断时,垂直的P与N之间建立横向电场,并且垂直导电区域的N掺杂浓度高于其外延区N-的掺杂浓度。

当VGSVth时,由于被电场反型而产生的N型导电沟道不能形成,并且D、S间加正电压,使MOSFET内部PN结反偏形成耗尽层,并将垂直导电的N区耗荆这个耗尽层具有纵向

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top