三运放架构对仪表放大器的制约
时间:05-26
来源:互联网
点击:
摘要:一直以来,三运放仪表放大器作为工业标准被用于那些要求高增益和/或高CMRR的精密应用场合。然而,当此类放大器工作在当前绝大多数应用所要求的单电源供电系统时,存在较大的局限性。本文阐述了传统的三运放仪表放大器的局限性,并介绍了Maxim受专利保护的间接电流反馈结构,这种架构的仪表放大器工作在单电源时具有明显优势。本文还给出测试波形,用于支持持具体的分析结构。
本文还发表在Maxim工程期刊,第60期(PDF, 873kB)。

图1. MAX4194–MAX4197系列三运放仪表放大器的内部结构示意图

图2. 在这个输入信号的二级放大架构中,输入共模电压被带入中间级(圆圈内)
目前,大多数低电压放大器都提供满摆幅输出,但不一定具备满摆幅输入特性。尽管如此,这里我们还是以单电源(VCC)三运放仪表放大器为例,假设该仪表放大器具有高增益、满摆幅输入和输出,如图1所示。
因为VOUT = 增益 × VDIFF + VREF,由此可得:
为防止VOUT1和VOUT2达到电源电压摆幅,必须保证:
0 (VOUT1,VOUT2) VCC
(例如,0 VCM ± (VOUT - VREF) / 2 VCC)
注意:
0 VOUT VCC
实际应用中经常设定VREF = 0 (用于单极性输入信号)或VREF = VCC/2 (用于双极性输入信号)。
当VREF = 0时,不等式简化为:
0 VCM ± VOUT/2 VCC
VREF = VCC/2时,不等式简化为:
0 VCM ± VOUT/2 ± VCC/4 VCC
通过图表更易于理解上述条件,如图3所示。

图3. (a) VREF = 0和(b) VREF = VCC/2时,不同输入差分电压下,单电源供电三运放仪表放大器所允许的VCM。横轴是经过放大的输入差分电压(VOUT)。
图3中的灰色区域表示输入共模电压的范围(与输入差分电压有关),其中,图1中的放大器(A1,A2)的输出将不会达到电源电压摆幅进入饱和状态,该范围取决于VOUT和VREF。因为VOUT - VREF是真正放大后的输入差分电压部分,所允许的共模输入范围随着输入差分电压的变化而变化。
当然,最理想的情况是充分利用电路增益—当输入达到预期的最大差分电压时获得满摆幅输出(VOUT)。图4中的黑色区域表示仪表放大器对最大输入差分电压进行放大时的输入共模电压范围,输出为:VOUT = 0或VOUT = VCC。

图4. 黑色区域表示(a) VREF = 0和(b) VREF = VCC/2时,传统的三运放仪表放大器对信号进行放大达到最大输出电压时(即最大输入差分电压时)所对应的输入共模电压范围。
由此可见,两种情况下输入共模电压都受到了严格限制,特别是:
因为A1饱和(VOUT1 = 0),使其进入了比较器(非线性)工作模式,反相引脚的电压不再与同相引脚(VIN-)保持相等的电压。放大器A2将等效于同相放大器,以1 + R1 / (R1 + RG)的增益放大同相端(VIN+)的电压。对于高增益放大器,RG R1,因而放大器A2变成了一个同相增益为2的放大器。
本文还发表在Maxim工程期刊,第60期(PDF, 873kB)。
仪表放大器的应用
在具有较大共模电压的条件下,仪表放大器能够对很微弱的差分电压信号进行放大,并且具有很高的输入阻抗。这些特性使其受到众多应用的欢迎,广泛用于测量压力和温度的应变仪电桥接口、热电耦温度检测和各种低边、高边电流检测。三运放仪表放大器
典型的三运放仪表放大器(见图1)可提供出色的共模抑制,并可通过单个电阻精确设置差分增益。其结构由两级电路构成:第一级提供单位共模增益和整体的(或大部分)差分增益,第二级则提供单位(或更小的)差模增益和整体的共模抑制(见图2)。
图1. MAX4194–MAX4197系列三运放仪表放大器的内部结构示意图

图2. 在这个输入信号的二级放大架构中,输入共模电压被带入中间级(圆圈内)
目前,大多数低电压放大器都提供满摆幅输出,但不一定具备满摆幅输入特性。尽管如此,这里我们还是以单电源(VCC)三运放仪表放大器为例,假设该仪表放大器具有高增益、满摆幅输入和输出,如图1所示。
因为VOUT = 增益 × VDIFF + VREF,由此可得:
| (VOUT1,VOUT2) | = VCM ± (增益 × VDIFF/2) |
| = VCM ± (VOUT - VREF) / 2 |
为防止VOUT1和VOUT2达到电源电压摆幅,必须保证:
0 (VOUT1,VOUT2) VCC
(例如,0 VCM ± (VOUT - VREF) / 2 VCC)
注意:
0 VOUT VCC
实际应用中经常设定VREF = 0 (用于单极性输入信号)或VREF = VCC/2 (用于双极性输入信号)。
当VREF = 0时,不等式简化为:
0 VCM ± VOUT/2 VCC
VREF = VCC/2时,不等式简化为:
0 VCM ± VOUT/2 ± VCC/4 VCC
通过图表更易于理解上述条件,如图3所示。

图3. (a) VREF = 0和(b) VREF = VCC/2时,不同输入差分电压下,单电源供电三运放仪表放大器所允许的VCM。横轴是经过放大的输入差分电压(VOUT)。
图3中的灰色区域表示输入共模电压的范围(与输入差分电压有关),其中,图1中的放大器(A1,A2)的输出将不会达到电源电压摆幅进入饱和状态,该范围取决于VOUT和VREF。因为VOUT - VREF是真正放大后的输入差分电压部分,所允许的共模输入范围随着输入差分电压的变化而变化。
当然,最理想的情况是充分利用电路增益—当输入达到预期的最大差分电压时获得满摆幅输出(VOUT)。图4中的黑色区域表示仪表放大器对最大输入差分电压进行放大时的输入共模电压范围,输出为:VOUT = 0或VOUT = VCC。

图4. 黑色区域表示(a) VREF = 0和(b) VREF = VCC/2时,传统的三运放仪表放大器对信号进行放大达到最大输出电压时(即最大输入差分电压时)所对应的输入共模电压范围。
由此可见,两种情况下输入共模电压都受到了严格限制,特别是:
- 如果想要完全放大单极性差分输入信号(假设VREF = 0且可以得到0至VCC的满摆幅输出),信号的共模电压应为?VCC。在其它共模电压下,输出电压将达不到VCC满摆幅(须减小输入差分电压的最大值)。对于双极性输入差分信号(VREF = ?VCC),0至VCC满摆幅输出电压所对应的输入共模电压范围仅为?VCC至?VCC。
- 在这两种情况中,如果输入共模电压达到或接近地电位(0V),放大器将无法放大输入差分电压信号。由此,假设输入差分电压(所需要的)与输入共模电压(不需要的)电压无关,黑色区域代表满量程输出电压VOUT对应的VCM最小值和最大值。该区域之外,VDIFF和VCM配合不当的话将会产生无法接受的VCM电压。注意,图4a中,如果需要得到满量程的VCM变化,则输入共模电压的容限为0。也就是说,输入信号不允许有共模变化。
- 如果内部放大器(A1和A2)在输出达到电源摆幅时发生饱和将如何处置?
- 输入不能达到满摆幅时会有什么影响?
输入放大器饱和的影响
假设放大器A1的输出达到地电位时发生饱和,即,VIN+ > VIN-,同时共模电压处于图4中的X区域(VDIFF大于灰色区的允许值)。因为A1饱和(VOUT1 = 0),使其进入了比较器(非线性)工作模式,反相引脚的电压不再与同相引脚(VIN-)保持相等的电压。放大器A2将等效于同相放大器,以1 + R1 / (R1 + RG)的增益放大同相端(VIN+)的电压。对于高增益放大器,RG R1,因而放大器A2变成了一个同相增益为2的放大器。
模拟电源 电源管理 模拟器件 模拟电子 模拟 模拟电路 模拟芯片 德州仪器 放大器 ADI 相关文章:
- 采用数字电源还是模拟电源?(01-17)
- 模拟电源管理与数字电源管理(02-05)
- 数字电源正在超越模拟电源(03-19)
- 数字电源PK模拟电源(04-03)
- TI工程师现身说法:采用数字电源还是模拟电源?(10-10)
- 开关电源与模拟电源的分别(05-08)
