电磁式操纵负荷系统的设计与实现

线圈和低碳钢筒构成了定子。外筒是由低碳钢制成的,低碳钢的磁阻是比较小的,而且成本比较低、强度又比较大,适合做电磁作动筒的外壳。
定子的结构图如图3所示,线圈绕在铝管上,相邻线圈由尼龙隔开,线圈装在外筒内,两端由低碳钢法兰固定,外筒和法兰同时起到导磁和隔磁的作用。
当活动杆中的永久磁铁的磁力线从N极出发回到S极,形成了一个闭合回路,磁力线会穿过线圈。磁力线的路径是走从N极到S极的最短路线。线圈一般采用铜线。线圈与线圈之间的连接物,也就是图3中线圈两边的阴影部分,它们是由尼龙制成的。因为尼龙与铜的导磁性相当,为了提高工作效率,一般增加线圈所围面积。从活动杆中永久磁铁N极出发的磁力线穿过线圈进入钢筒(假设磁力线是垂直进入线圈的),低碳钢筒相当于一个导磁机构,让磁力线通过然后再穿过线圈回到磁铁的S极,这样就形成了一个闭合的回路。这样的设计有利于集中磁铁所发出的磁力线,减少磁场的浪费。
当线圈通电时,线圈产生磁场,由物理电磁学方面的知识可以知道线圈内部的磁场是匀强磁场。因为线圈所产生的感应磁场对活动杆的影响很微小,可以忽略不计,假设活动杆相对线圈的位移方向已知,当磁铁的磁力线穿过通电线圈时,通电线圈就会受到力的作用,因为电流的方向和磁力线的穿过方向都是已知的,所以线圈受力方向也是可以判断出来的。由图4可以知道,活动杆相邻的线圈电流方向是相反的,相邻的磁铁极性是同级相对。所以用左手定则,对每个线圈进行受力分析,可以判断出每个线圈的受力方向。
由公式F=nBILsinθ可以知道线圈受力的大小。其中n为线圈的匝数;B为磁铁的磁感强度;I为线圈中通电流的大小;L为线圈一圈的周长;θ为I与B的夹角。可以假设磁力线是垂直进入线圈的,即θ为90°,则公式可简化为F=nBIL,当活动杆发生位移时,线圈不同部位因为穿过的磁力线方向不同,所受力的方向也不同,而n不同导致所受力的大小不同,因为铜线的粗细是均匀的,所以线圈的匝数在某种程度上可以表示位移量。由于磁场强度B只由磁铁产生,所以可以认为是稳恒不变的,则力F是一个与位移量及通电线圈电流大小有关的函数。增大位移量或电流大小,都可以在不同程度上增加F的大小。
2.3 系统软件实现
电磁式操纵负荷系统的软件用Visual C++6.0编写,主要由初始化模块、模型负载力计算模块和故障处理模块组成。
系统软件的主要任务是依据纵向负载力的数学模型,实时计算纵向模型负载力。首先实时地从主控计算机和位移传感器、速度传感器中接收当前迎角或侧滑角、马赫数、升降舵襟翼角及升降舵偏角、升降舵调整片偏角、纵向角加速度、纵向过载、驾驶杆位移、驾驶杆移动速度及其他与负载力有关的参数,在预先给定的二维插值函数表内插值和计算得到当前时刻的铰链力矩导数,计算出当前时刻的铰链力矩及气动力,然后计算当前的其他负载力,最后计算总的模型负载力。
3 试验验证
试验的目的是找出操纵负荷系统中的力、位移、电压之间的关系,得出三者之间的关系曲线,验证电磁式操纵负荷系统的性能。
实验设备主要有:电磁式操纵负荷系统、示波器、卷尺(精确到0.1 mm)、钢尺(精确到0.5 mm)、胶带、剪刀和标记笔等。
因为推杆和拉杆是可逆的过程,所以实验只考虑其中之一,以拉杆为例,假设其产生的操纵负荷的力为正。
由于操纵机构的上下杆长度之比为8:1,所以杆位移量为磁铁位移量的8倍。在电压为3 V,6 V,10 V这三种情况下,改变位移的大小,记录力随位移的变化曲线,如图5所示。

由图5可以看出,电磁操纵负荷系统的力、位移、电压关系实验曲与图1所示的某型教练机杆力杆位移曲线基本吻合,同时还得出结论:铁芯长度+磁铁长度=最大行程/2;力是位移与电流的函数;线圈最大宽度小于最大行程。
4 结语
利用电磁作动筒作为飞行模拟器操纵负荷仿真系统的力伺服系统,构成了飞机纵向操纵负荷仿真系统,现在已经成功应用于某型教练机飞行模拟器的纵向操纵负荷仿真系统中。通过近几年的模拟训练证明,该方法仿真精度高,响应速度快,负载力模型和参数易于修改,可适
应不同仿真对象和不同工作模式负载力特性变化的要求,可推广应用于多种类型的飞行模拟器的操纵系统中。该方法还可用于横向操纵负载力及脚蹬力的仿真。
- 一种通信电源监控系统组网方案的设计(01-05)
- 通信电源监控系统模拟量采集模块的设计(01-05)
- 通信电源监控系统下位机硬件电路的设计(01-05)
- PEMFC电源系统的开发与应用(01-06)
- 智能蓄电池监测系统的研制(01-06)
- 电源系统中的单元电路_电源技术概要㈡(02-19)
