电磁式操纵负荷系统的设计与实现
摘要:提出了一种新型的飞行模拟器操纵负荷仿真系统。依据电磁学的有关知识研制了电磁作动筒,并将电磁作动筒作为飞行模拟器操纵负荷仿真系统的力伺服系统,构成了电磁式力伺服加栽方式的飞机纵向操纵负荷仿真系统。试验验证结果和实际应用表明,该系统具有仿真精度高、快速性好等特点,负载力模型和参数易于修改,可适应不同仿真对象和不同工作模式下负载力特性变化的要求,能广泛地应用于飞行模拟器的操纵力负荷仿真系统中。该方法还可用于飞机横向操纵负载力及脚蹬力的仿真。
关键词:操纵负荷系统;模型负栽力;电磁作动筒;飞行模拟器
0 引言
飞行模拟器操纵负荷系统是向飞行员提供操纵力的操纵负荷仿真系统,用于仿真飞机纵向驾驶杆力、横向驾驶杆力和脚蹬力。目前,国内外大型的飞行模拟器操纵负荷仿真系统都采用力伺服系统加载的仿真方法,力伺服系统加载既可以采用液压式,又可以采用电动式。液压力伺服系统虽然功率大、快速性好、精度高,但系统复杂、成本高、维护工作量大;电动式力伺服系统主要使用力矩电机产生负载力,具有成本低、易于维护、使用方便等优点,已经成为一种操纵负荷仿真系统的发展趋势。
本文以某型教练机为例,提出了一种新型的电磁式力伺服加载的飞行模拟器操纵负荷仿真系统。依据负载力的数学模型,利用电磁式力伺服系统加载技术,实现了飞机操纵负荷系统纵向驾驶杆力的仿真。
1 负载力数学模型
电磁式操纵负荷系统是人在回路仿真系统中的负载模拟装置,要完成对飞行员十分敏感的驾驶杆力、脚蹬力的仿真。正确建立飞行中飞行员握点处负载力的模型是十分关键的。以飞行员直接操纵舵面为例,纵向负载力不仅与杆的位移有关,而且还与杆的运动状态及飞机的运动状态有关,飞行员感受到的负载力主要由气动力、惯性力、库仑摩擦力、粘性摩擦力、弹簧力等组成,其中气动力是飞行员在握点处感受到的主要载荷力。总负载力可表示为:
图1为某型教练机的杆力位移曲线。

操纵负荷系统计算机要能实时地计算出操纵驾驶杆时的模型负载力,给操纵者提供逼真的力感觉,使飞行员在飞行模拟器驾驶杆握点处能感受到像在真正驾驶某型教练机时所具有的力感,即杆力随位移的变化规律应与图1所示某型教练机杆力杆位移曲线一致,从而训练飞行员能根据力感大小,判断飞机的操纵性、稳定性,并能正确把握操纵量的大小范围。
2 仿真系统设计
2.1 仿真系统结构
仿真系统结构如图2所示。当拉杆或推杆时,驾驶杆的位置发生变化,产生的位移、速度信号经传感器实时地送给操纵系统计算机,操纵系统计算机同时还实时地从主控计算机接收与纵向负载力有关的参数,按有关数学模型计算出当前反应在握杆点、操纵者施加在驾驶杆上的纵向模型负载力信号,经D/A变换后为ux。同时,驾驶杆的位置变化通过力传感器传递给作动筒,使作动筒伸长量发生变化,力传感器还将纵向负载力转变成电信号uf,它与ux之差构成PWM驱动器的控制信号uc,控制信号uc经PWM驱动器放大后驱动电磁作动筒工作,使作动筒的伸长量发生新的变化。经过力传感器的负反馈作用,可使uf与ux的差值趋于零,保证了通过电磁作动筒、力传感器给驾驶杆加载的力等于按负载力数学模型计算的力。

2.2 电磁作动筒的设计
飞行模拟器电磁式操纵负荷系统的核心部件是电磁作动筒,其性能决定了电磁式操纵负荷系统的性能,对飞行模拟器的整机性能也产生重大影响。
2.2.1 电磁作动筒的组成
飞行模拟器电磁式操纵负荷系统的电磁作动筒主要由活动杆、定子两部分组成,如图3所示。其中活动杆由七块永久磁铁和八块铁芯组成,活动杆的外部材料采用金属铝。定子的内部结构主要由七个线圈组成,线圈一般为铜线,相邻线圈的绕向相反,线圈之间是尼龙,而外筒则是由不锈钢制成。这里选择线圈的宽度为52mm,磁铁宽度为35mm,尼龙的宽度为10mm。

2.2.2 制作电磁作动筒材料的选择
制作电磁作动筒材料的选择与导磁率有关。导磁率是表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又称为绝对磁导率。物质的绝对磁导率和真空磁导率比值称为相对磁导率。铸铁的相对磁导率为200~400;硅钢片为7 000~10 000;镍锌铁氧体为10~1 000;镍铁合金为2 000;锰锌铁氧体为300~5 000;坡莫合金为20 000~200 000;空气的相对导磁率为1.000 000 04;铂为1.000 26;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1;铜具有抗磁性,相对导磁率也有0.999 90;纯铁为顺磁性物质,其相对磁导率会达到400以上,用铜裹住铁并不能阻断磁力,在某些特殊情况下,铜的抗磁性会表现出来。各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对导磁率近似为1,他们具有抗磁性。而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性能,可用于导磁,也可用于隔磁。由此可知,电磁作动筒所采用的几种材料,其导磁率应该近似一样,同时为了提高系统效率,要求线圈覆盖面积大,且不易过厚。
2.2.3 电磁作动筒的工作原理
电磁作动筒示意图如图4所示,活动杆中的七块磁铁NS极的排列方向是同极相对,所以从左到右依次为S极N极、N极S极、S极N极、N极S极、S极N极、N极S极、S极N极,并且相邻的两个线圈的磁场方向不同。磁铁的磁力线从N极出发穿过线圈,然后再回到S极。
- 一种通信电源监控系统组网方案的设计(01-05)
- 通信电源监控系统模拟量采集模块的设计(01-05)
- 通信电源监控系统下位机硬件电路的设计(01-05)
- PEMFC电源系统的开发与应用(01-06)
- 智能蓄电池监测系统的研制(01-06)
- 电源系统中的单元电路_电源技术概要㈡(02-19)
