电子门工作原理
电子门工作原理
1. 引言 2. 组装数字设备的准备工作 3. 组装TTL门的设备 4. 为TTL芯片提供电源 5. 组装调节器 6. 使用布尔门 7. 动手组装数字设备引言

如果您已阅读了博闻网有关布尔逻辑方面的文章,您就会知道数字设备取决于布尔门。也可以从该文章中了解到,一种实现门的方法是使用继电器。但是,现代计算机都不再使用继电器,它们使用的是“芯片”。
如果要使用布尔门和芯片进行试验,结果会怎样呢?如果要组装您自己的数字设备,结果又会怎样呢?结果表明,这些并不像想像的那么困难。在本文中,您将了解如何试验布尔逻辑文章中所讨论的各种门。我们将讨论从哪里购买部件、如何连接这些部件以及如何查看它们所完成的操作。在这一过程中,您将开启一扇通向全新技术领域的大门。
组装数字设备的准备工作
在布尔逻辑的应用一文中,我们了解了七种基本的门。这些门是所有数字设备的基本组成部分。我们还了解了如何将这些门组装成更高级的设备,如全加器。如果您要试验一下这些门,以便自己动手组装设备,最简便的方法是购买称为TTL芯片的部件,并快速在称为无焊电路试验板的设备上将电路连接在一起。我们简要介绍一下这一技术和过程,以使您能够真正组装好设备!
如果回顾一下计算机技术的发展历史,您就会发现所有计算机都是围绕布尔门进行设计的。但是,经过多年的发展,用于实现这些门的技术已发生了根本性变化。第一个电子门是使用继电器制造出来的。这种门的速度很慢,并且体积庞大。后来,电子管取代了继电器。电子管的速度要快得多,但体积仍然很庞大,并且还会受到电子管容易烧毁的问题的困扰(就像灯泡一样)。随着晶体管日趋完善(晶体管于1947年问世),计算机开始使用通过分立式晶体管制成的门。晶体管具有很多优点:比电子管或继电器的可靠性高、功耗低且尺寸小。这些晶体管是分立式设备,这意味着每个晶体管都是单独的设备。每个晶体管位于豌豆大小的金属上,并连接了三根导线。要制作一个门,可能需要三或四个晶体管以及一些电阻器和二极管。
在60年代早期,集成电路(IC)问世了。这意味着可以在一个晶片上集成晶体管、电阻器和二极管。这一发现导致了小规模集成电路(SSI)的出现。小规模集成电路通常由3平方毫米的晶片构成,上面蚀刻了大约20个晶体管和各种其他元件。典型的芯片可能包含四个或六个单独的门。这些芯片将计算机的尺寸缩小了大约100倍,使制造计算机变得容易得多。
随着芯片制造技术的改进,可以在单个芯片上集成越来越多的晶体管,从而导致了中规模集成电路(MSI)的出现,其中包含由多个门组成的简单元件,如全加器。然后出现了大规模集成电路(LSI),设计人员可以将简单微处理器的所有元件都放到单个芯片上。1974年,英特尔研制出 8080处理器,这是商业上第一个成功的单芯片微处理器。它是一个包含4,800个晶体管的大规模集成电路。从那时起到现在,超大规模集成电路(VLSI)又稳步提高了晶体管的数量。第一个奔腾处理器于1993年问世,它包含320万个晶体管,最新的芯片可能包含多达2000万个晶体管。
为了试验一下门,我们还是延用早期的小规模集成电路。 这些芯片在很多地方仍然有售,性能极其可靠且价格低廉。您可以逐个使用它们制作所需的某种设备,一次使用一个门。 我们将使用的芯片属于最常见的TTL系列(称为7400系列)。这一系列中可能有100种不同的SSI和MSI芯片,范围涵盖简单的和门以及完整的算术逻辑单元(ALU)。
![]() |
![]() 无焊电路试验板 |
所有电子门都需要电源。TTL门使用5伏电源来保持运行。芯片对这一电压的要求是相当严格的,因此,每次使用TTL芯片时,我们都需要使用无波动的5伏稳压电源。某些其他芯片系列(如4000系列的CMOS芯片)对于所使用的电压就没有那么严格。CMOS芯片还有另外一个优点,即它们使用的能耗要小得多。但是,它们对静电非常敏感,从而使其可靠性下降,除非在无静电的环境中使用。因此,我们此处仍坚持使用TTL。
组装TTL门的设备
为了组装TTL门,您手头必须有一些设备部件。以下是需要购买的部件清单:
- 电路试验板
- 电压电阻计(也称为万用表)
- 逻辑探针(可选)
- 5伏稳压电源
- 一组用于试验的TTL芯片
- 几个用于查看
模拟电路 模拟芯片 德州仪器 放大器 ADI 模拟电子 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 利用GM6801实现智能快速充电器设计(11-20)


