基于OPA820宽带放大器的设计
级放大电路,在6 H z~ 20 MHz 的通频带中实现放大增益为43 dB, 具有带内波动小, 输出噪声低的特点。同时将单一的5 V 电源通过TPS61087 和MC34063A 产生系统所需要的正负电源为放大器供电。放大器输出经过精密峰值检波电路后得到信号的峰峰值, 再对信号进行调理后送MSP430 单片机进行数据采集、显示。对提高宽带放大器的各种性能指标提出了多种具体措施,在自动化要求较高的系统中具有很好的实用性。
0 引言
放大电路在工业技术领域中, 特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中, 首先要把被控制的非电量( 如温度、转速、压力、流量、照度等) 用传感器转换为电信号, 再与给定量比较, 得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构, 所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示, 从而达到自动控制和测量的目的。同时在很多信号采集系统中, 信号变化的幅度都比较大, 那么放大以后的信号幅值有可能超过A/ D 转换的量程, 所以必须根据信号的变化相应调整放大器的增益。在自动化程度要求较高的系统中, 希望能够在程序中用软件控制放大器的增益, 或者放大器本身能自动将增益调整到适当的范围。本文采用T I 公司的高速运算放大器OPA820 作为第一级放大电路进行11 倍的放大, 采用T I 公司电流反馈性运放THS3091 作为末级放大电路进行11 倍的放大, 并作为功率放大器驱动50 Ω阻性负载, 在输出负载上, 放大器最大不失真输出电压峰峰值可达10 V 以上。通过两级放大放大器电压增益≥40 dB。输出的信号通过峰值检测模块, 通过A/ D 采集输入MSP430 单片机, 在液晶屏上显示出放大器的输入电压的峰峰值和有效值。
由于在实际应用中常采用5 V 单电源供电, 本文选用TPS61087 电源芯片提供+ 10 V 电压, 选用MC34063 电源芯片提供- 10 V 电压来为T HS3091 供电。选用MAX764 电源芯片提供- 5V 电压, 和输入的5 V 电压来为OPA820 供电。
系统总体框图如图1 所示。
图1 系统总体框图
为了尽可能降低放大器的输出噪声, 本文采取了相应的抗干扰处理: 不同级电路之间采用同轴电缆连接, 退耦电容尽量接近芯片电源引脚, 采用热转印法手工制PCB工艺, 尽量减少分布参数的影响。
1 单元电路设计
1. 1 电源模块设计
由于在实际应用中常采用5 V 单电源供电, 本文选用TI 公司的T PS61087 电源芯片提供+ 10 V 电压, 选用MC34063 电源芯片提供- 10 V 电压来为T HS3091 供电。
选用MAX764 电源芯片提供- 5 V 电压, 和输入的5 V 电压来为前级电压放大模块OPA820 供电。
T PS61087 是一款T I 公司的DC??DC 变换器。可以将2. 5~ 6 V 的输入电压变换为0. 5~ 18. 5 V 的电压输出,可以工作在650 kHz 和1. 2 MHz 两个频段上。输出电流可高达900 mA。
MC34063 是一单片双极型线性集成电路, 专用于DC-DC 变换器控制部分, 能在3. 0~ 40 V 的输入电压下工作,输出开关电流可达1. 5 A, 也可构成反向电源变换器。
MAX764 是一款DC-DC 变换器。可以将3~ 15 V 的输入电压变换为- 5 V 的电压输出。输出电流为250 mA。
电源模块如图2 所示。
图2 电源模块
- 一种宽输入范围高精度频率计的设计(09-02)
- 利用 OPA 实现 Bass Boost 案例分享(01-24)
- 分析传感器输出传输功能技巧(07-03)
- 宽频带双输入运算放大器OPA678(09-03)
- 具有排序及跟踪功能的LDO(02-26)
- 多媒体手机的电源管理分析 (07-06)