功放参数指标(下)
一个电压,这个电压会被负回输线路反馈至输入端,和输入讯号打成一片。使中低频声音混浊,分析力和层次感大减。
要降低界面互调失真,关键之处是要降低负回输量和放大器内阻(即提高阻尼系数)。有许多Hi-End晶体管放大器正是采用这种原则进行设计的。除此以外,双线接驳也是另类改善途径,因为分开的高低音线路使低频端的反电势不会对高频讯号产生影响,从而改善音质。
阻尼系数(Damping Factor)
阻尼系数的扬声器阻抗和放大器输出阻讥之间的比例。顾名思义,阻系数是表示对某一个过程中进行变化的物理量加以抑制的程度。以扬声器来说,要抑制的是扬声器振膜在没有电讯号输入的情况下所作的惯性振动,简单地说这是一个制动动作。扬声器的振膜是不能用机械阻尼方式来制动的,所能使用的只是电磁方式的阻尼。而这种方式要求系统必须尽量处於发电机状态。
前面的讨论曾提及扬声器会很容易进入发电机状态,当输入电读号消失后的一瞬间,扬声器振膜在惯性作用不还在振动。这种振动会在音圈中产生出一个感应电压,这时如果放大器输出阻讥低的话,就相当於在扬声器端子上并接一个很小的电阻,音圈上的感应电压就会驱使一个较大数值的电流流经放大器的内阻邮局就是说扬声器此刻变成电源,而放大器的功率输出级线路却变成负载。根据电磁感应定律,这个电流是音圈在永久磁铁的磁场中振动所产生的,所以这个音圈电流就必定会产生一个和振动方向相反的力去抵消振动。放大器的内阻越小,电流就越大,抵消惯性振动的作用也就越强。由於这个电流的能量是会在电阻上变成热量消耗掉,所以这种制动方式在电机控制技术中称为“能耗制动”(Dynamic Bracking)。扬声器在重播低频时的振幅最大,所造成的惯性振动也最严重,不加以抑制的话会使低频控制力变差,缺乏力度、弹性和层次感,但过份抑制则会使声音变乾。
胆机因为有输出火车的线圈电阻存在,阻尼系数大极有限,相反地,晶体管机采用多管并联系等方法可轻易将阻尼系数提升至一百几十,甚至达到数百。不过可异一个阻巴系数的要求,这也就造成了不同的扬声器和放大器之间会有各种不同音色的配搭。
对采用了大一半路负回输的放大器来说,阻尼系数并不是唯一会对扬声器进行刹车的工具,因为扬声器的惯性振动电流流经放大器的输出内阻时,将会产生某个数值的电压,负回输线路即时将之反馈至输入端,令放大线路以为出现了一个不该出现的失真电压,马上产生一个反相的讯号加以抵制。这可是一种最强力的马达电制动方式,称为“反接制动”(Plugging)。不过也是一种最少使用的方式,因为令一台马达突然反转会产生巨大的机械冲击力而损坏机器,但扬声器本来就是设计成不断前后运动的装置,所以这种方法理论上完全没有问题,然而实际上却常常出问题,麻烦又是来自负回输。
扬声器不是麦克风,由振膜振动产生的电压,不会像麦克风寻样准确,所以放大器生的抵消电压也不可能做到完全和振动大小相等,方向相反。结果是使抑制过程出现不稳定,低频不是圆滑而迅速地减少,这个过程其实和界面互调失真的过程非常相似。某些原子粒放大器的低频控制力还不如胆机,原因也就在於此。
衡量放大器性能还有一些其他的规格,这篇文章所提及的只是些较多发烧友关注,加上经常出现争议的规格。笔者决不是什么专家,只是因为工作时往往需要同时兼顾电机和电子甚至机械方面的技术原理,头痛之馀发觉在发烧领域中有许多的技术或问题,现象等等,其实都是一些在其他工程技术领域早已被人了解和认识的东西,其本身并不深奥和神秘,只是不同行业解释 方法不同而令人摸不着头脑,这篇文章当试用一些具体的比喻解释和区别一些常令人混肴的规格。希望一些非工程人仕的发烧友能有更清晰的概念。
放大器技术发展到今天相信已很难在线路设计和材料运用方面作出特别技术突破。高质素的器材只能是靠仔细认真的态度,对过往常被人忽视的,大量的琐碎技术规格一点一滴地去改善,每前进一上都很不容易,成本和成果越来越不成比例。所谓平,靓,正只是相对而言,技术是用钱砌出来的,有许多所谓高科技军事技术,运用的只是那些各国大专院校和研究机构的学者,为了提高自己的学术地位,在公开渠道上发表的理论研究成果,根本无密可保,难只是难在预研,设计,试验,生产和保证质方面的工艺技术,像Hi-Dnd器材一样,所投入的成本往往是天文数字,得回来的有可能只是一项单靠改造老机器便能使用的工艺.
- 基于DPPC2006的数字音频功率放大器(05-05)
- 可用于音频功放的过温保护电路设计(11-05)
- D类MOSFT在发射机射频功放中的应用(11-18)
- OTL功放电路中的自举电容原理(02-07)
- 2SA2151和2SC6100设计的分立元件功放电路(08-08)
- 高频大功率开关稳压电源在专业功放中的应用分析(04-27)