功放参数指标(下)
出现负回输时间延迟,输入讯号也不至於过强。所减少的负回输量则由只跨越1个放大级的局部负回输代替,,局部负回输路径短,时间快,不易诱发瞬态互调失真。真空管工作稳定,不一定要用大深度负回输抑制失真,况且其失真多数是人耳爱听的偶次谐波失真所以胆机没有一般所谓的“原子粒”声。至於其他用於线路设计上防范瞬态互调失真的方法,因涉及较多枯燥的理论,这里就不一一介绍了。
除了在线路设计上防范瞬态互调失真外,发烧友还可以采取另一项措施去减少瞬态互调失真,那就是尽量利用各种屏蔽和滤波措施去减少各种高频干扰讯号进入放大器,虽然这些讯号有许多是属於人耳听不见的射频干扰,但因为其频率很高,极易诱发瞬态互调失真,令输入级过载,使音乐讯号得不到正常的放大。
转换速率
瞬态互调失真除了由放大器大环路负回输的时间延迟引发外,放大器速度不够快也是一个重要的原因,如果放大器的速度够快的话即使在同样负回输条件下,瞬态互调失真度也可以降低。放大器的速度是一个通俗的形容,正确的说法应该是指放大器的瞬态响应能力(Transient Response)。在控制理论中,瞬态响应和频率响应是衡量系统性能的两大方法。它们的优点是不需经详细了解整个系统的详细数学模型,只需要根据系统对特定输入讯号的响应曲线介可估算出系统对特定输入讯号的响应曲线便可估算出系统的特性,从而作出补偿或改善。但相反来说,如果我们知道某个系统的数学模型,也可以不经测试就估算出该系统的响应模式。
对于精确度要求不高的系统,我们可以选择性地采取瞬态响应法或频率响应法去评估系统性能,而对于要求高的系统,两者都必须加以考虑。作瞬态应测试时常用的讯号是单位阶跃函数(Step Signal)和单位脉冲函数(Impulse)。为方便起见,放大器测试多用前者的特殊形式:方波/。一个较为理想的方波含有一个速度极高的电压上升沿和降沿,用来测试放大器的瞬态响是非常合适的。
衡量放大器的响应速度一般是用电压转换速率(Slew Rate,台湾称“回转率”)。其定义是在1微秒时间里电压升高幅度,如果以方波测量的话则是电压由波谷升至波峰所需时间,单位是V/u s,数值愈大表示瞬态响应度越了,高性能放大器的转换速率一般都可以做到25V/u s以上。
提高瞬态响应度最简单接的办法是选用高频特性好的零件。也可以用适当的环路负回输来改善,这似乎是一个自相矛盾的做法,但事实不然,瞬态互调失真只是当讯号速度超过放大器的瞬态响应能力范围之外才会发生。
除了瞬态互调失真外,过快的讯号也会产生另一种失真现象,叫做铃振(Ringing),两者的本质相同。当输入讯号速度快而幅度小时,首先出现的是铃振现象,只有当这个讯号的速度快至某个程度时才会出现瞬态互调失真,然而当讯号速度快兼幅度大时,铃振没有发生便已进入瞬态互调失真状态。最容易引发铃振现象的讯号就是各种各样的速度快但幅度小的高频干扰噪音,这就是为什么音响设备要有完善的抗干扰措施的原因之一。
界面互调失真(Interface Intermodulation Distortion)
界面互调失真算是一个较新和较少人提及的放大器规格。和下面将要提及的阻尼系数一样,除了和放大器线路有关外,和扬声器也有很大关系。所以在介绍这两项规格前,先简单地说一说扬声器有关这方面的特性。
目前的音响扬器绝大部分都是采用电动式原理的动圈式喇叭,其结构包括一个用作产生磁场的永久磁铁及一人音圈。从构造上来说动圈式扬声器属於一种特殊形式的直流马达,因为音圈只需要来回运动而不是旋转,所以不需使用直流马达上常见的炭刷和换向器(俗称“铜头”)
无论是交流马达或是直流马达,都是具有可逆性的,即在某种条件下可当作发电机来使用。直流马达在结构上和直流发电机没有差别,尤其是永久磁钱式直流马达,只要能够使它的转轴转动,就可在其接线端上产生出一定的电压。对动圈式扬声器来说,只要我们用手按压振膜,就一定会在接线端上产生电压,大小则视乎按压的速度和幅度而定。
由于损耗和非线性化的影响,扬声器不可能对由放大器输出的全部电能加以利用而会有剩余电能产生,另外由于振膜的机械惯性原因,在音圈中也会产生多余电能。由前者所产生的问题稳为界面互调失真,而后者则会使扬声器的低频控制力变差。
界面互调失真和扬声器内阻及负回输线路有关。当放大器输出的电能无法全部转变为机械能量时,多余的电能就必定会在扬声器线圈中产生出额外的反电势(Back emf),这个反电势会由喇叭线回馈至放大器的输出端,然后依放大器内阻的大小形成
- 基于DPPC2006的数字音频功率放大器(05-05)
- 可用于音频功放的过温保护电路设计(11-05)
- D类MOSFT在发射机射频功放中的应用(11-18)
- OTL功放电路中的自举电容原理(02-07)
- 2SA2151和2SC6100设计的分立元件功放电路(08-08)
- 高频大功率开关稳压电源在专业功放中的应用分析(04-27)