大小功率LED照明方案选择指南
Alexander Sommer强调:“对于100W以上的更高功率级LED照明应用,效率变得更加重要,建议使用LLC谐振拓扑结构,它可以实现90%以上的效率。我们建议你使用英飞凌新的8引脚器件ICE1HS01。”
不管LED照明系统的输出功率有多大,LED驱动器电路的选择都将在很大程度上取决于输入电压范围、LED串本身的累积电压降、以及足以驱动LED所需的电流。这导致了多种不同的可行LED驱动器拓扑结构,如降压型、升压型、降压-升压型和SEPIC型。
凌力尔特公司电源产品部产品市场总监Tony Armstrong指出:“每种拓扑结构都有其优点和缺点,其中,标准降压型转换器是最简单和最容易实现的方案,升压型和降压-升压型转换器次之,而SEPIC型转换器则最难实现,这是因为它采用了复杂的磁性设计原理,而且需要设计者拥有高超的开关模式电源设计专长。”
总而言之,终端产品的应用决定LED的拓扑结构,然后再根据LED的拓扑结构和输入电源再合理选择Buck、Boost、SEPIC、或Buck-Boost结构。“一般来说,25W以下选用Buck的较多。更大功率的则倾向于选择Boost结构。效率的话两者一般都可以做到85%以上,LT3755可以做到高达97%的效率。考虑驱动部分BOM成本的时候更应该考虑整体系统成本。”徐瑞包说,“随着竞争的加剧,时时会有更低BOM成本的方案,但不一定是最合适的。我们不建议按照这个标准设计产品。PCB面积主要受主要元件的控制,小功率的LED灯尽量采用集成度高的方案。大功率的方案要选用技术集成度高的产品,外围电路简单。此处讨论的都是指DC-DC的解决方案。”
梁后权也指出:“为了达到高效率要求,应当考虑采用开关模式LED驱动器,大多数这类客户更喜欢选择降压LED驱动器,因为总的效率更高一些。如果从最低BOM成本角度来考虑,开关型LED转换器不是最便宜的。此类客户可能会试图采用线性恒流LED驱动器。这可以提供最低的BOM成本,但效率可能就不会像开关模式LED驱动器那样高。如从最小PCB板面积的角度考虑,通常将选用开关模式转换器,因为它们产生更少的热量,甚至相关的元器件体积也将会更小。”
模拟、PWM和TRIAC调光方案
LED调光解决方案及规范一直在不断变化,直到现在还未固定下来,所以现在市场上存在PWM、模拟及可控硅(TRAIC)三种调光方案。PWM和模拟方法是其中较简单的,但需要构建调光基础架构和新的调光控制器。
模拟调光方案的缺点是,LED电流的调节范围局限在某个最大值至该最大值的约10%之间(10:1调光范围)。由于LED的色谱与电流有关,因此这种方法并不适合于某些应用。
PWM调光方案则是以某种快至足以掩盖视觉闪烁的速率(通常高于100MHz)在零电流和最大LED电流之间进行切换。该占空比改变了有效平均电流,从而可实现高达 3000:1的调光范围(仅受限于最小占空比)。由于LED电流要么处于最大值,要么被关断,所以该方法还具有能够避免在电流变化时发生LED色偏的优点,而在采用模拟调光时这种 LED 色偏现象是很常见的。
SangCheol Her则看好TRIAC调光方案的市场前景,他表示:“可控硅(TRIAC,2线调光)将成为非常流行的解决方案,因为这种技术可以完全使用传统的系统而不需任何改变。而且,它还能够扩展为3线调光,以避免出现与低功率因数值相关的缺陷。”
TRIAC调光今天是业内非常热的一个话题,最初,TRIAC调光器是为白炽灯而设计的,但大多数用户希望相同的TRIAC调光器也能对替代的LED灯进行调光。梁后权表示:“Diodes Zetex目前可为客户提供全部的调光解决方案(包括PWM、模拟和TRIAC)。例如,ZXLD1362 LED驱动器用一个ADJ引脚来实现模拟和PWM调光,这就为客户带来了很大的设计灵活性。”
不过,郑宗前认为,市场上TRIAC调光器的应用方案应该只是过渡性的,长远来说,应该会用PWM调光。他说:“主要的三点决定性因素为:1)用PWM 调光从零到最光,都不会有闪烁的现象。2)性能会更好。因为调光输出功率采用了功率因数校正电路,这是配合全球对灯光采用功率因数有强制性的要求,虽然一般从25 W开始有这要求,但美国要求灯光从零瓦起已需强制性功率因数校正电路。如采用TRAIC调光将牺牲功率因数和增加了电路的复杂性。因此,采用PWM调光可以提供最好性能的选择,也是未来的趋势。3)成本会更好。用PWM调整占空比,不需要太多额外的控制电路成本。”
Alexander Sommer也看好PWM调光方案前景,他说:“与模拟调光方法相比,LED的PWM调光方法有以下优点:1)效率更高;2)不管调光程度有多大,允许LED一直在优化的和恒定的电流下工组;3)在整个调光范围内LED颜色色调保持一致(颜色色调像流明输出一样随LE
- 采用异相功率放大器提高WLAN系统功率效率(01-22)
- 什么是高功率放大器(01-24)
- 功率放大器的使用极限(01-26)
- DC-DC电荷泵的研究与设计(01-05)
- 什么是电功率?(01-26)
- 高效率大功率适配器的研究(01-05)