微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > UC3855高性能功率因数校正预调节器

UC3855高性能功率因数校正预调节器

时间:10-24 来源:互联网 点击:
摘要

  电源转换器正朝着越来越高的功率密度的方向发展。通常,获得这种高功率密度的方法是提高开关频率,可以缩小滤波器组件的尺寸。但是,提升开关频率会极大地增加系统的开关损耗,而这种损耗会阻碍系统在高于100kHz的开关频率上运行。

  1. 本文引言

  为了在保持一定效率的同时增加开关频率,人们开发出了几种软开关技术(1、2和3)。大多数谐振技术都增加了半导体电流和/或电压应力,从而导致器件体积增大,并增加大环流带来的传导损耗。然而,一种新型转换器被开发了出来,其允许在没有增加开关损耗的情况提高开关频率,同时克服了谐振技术的大部分弊端。在实现主开关零电压开启和升压二极管零电流关闭的时候,零电压转换(ZVT)转换器工作在一个固定频率上。这仅仅是通过在开关转换期间运用谐振操作来实现的。在周期的剩余时间里,从根本上将谐振网络从电路中消除,而且转换器的运行同其非谐振部分完全一致。

  同传统的升压转换器相比,这种技术带来了效率方面的提高,并可以在低应力下运行升压二极管(这是因为关闭状态下受控的di/dt)。二极管软开关还可以降低EMI(这是一个重要的系统考虑因素)。

  有源功率因数校正将对转换器的输入电流进行编程以跟随线电压,并且有可能实现3% THD的0.999功率因数。Unitrode UC3855A/B IC集成了功率因数校正控制电路,该控制电路可以为高功率因数提供数个电流传感和功率级ZVT运行方面的增强特性。

  UC3855集成了设计一款带有平均电流模式控制功能的ZVT功率级所需的所有控制功能。由于其能够在避免斜率补偿和其他方法(5、6)低噪声抗扰度的同时对输入电流进行精确地编程,因此人们选择了平均电流模式控制。

  1.1 ZVT技术

  1.1.1 ZVT升压转换器功率级

  除开关转换以外的整个开关周期中,ZVT升压转换器的运行均同传统的升压转换器一样。图1显示的就是ZVT升压功率级。ZVT网络由QZVT、D2、Lr和Cr组成,提供了升压二极管和主开关的有源缓冲。[4、7、8]描述了ZVT电路的运行情况,为了叙述的完整性在此处进行了回顾。参见图2,下列时序间隔可以被定义为:

  


  具有ZVT功率级的升压转换器

  

  ZVT时序结构图

  1.1.2 ZVT时序

  1.1.2.1 t0-t1

  t0之前的时间里,主开关处于关闭状态,二极管D1正传导满负载电流。在t0处,辅助开关(QZVT)被开启。由于辅助开关处于开启状态,Lr中的电流线性地上升至IIN。在此期间,二极管D1中的电流正逐渐下降。当二极管电流达到零时,该二极管关闭(例如D1的软开关)。在实际电路中,由于二极管需要一定时间来消除结电荷(junction charge),因此会有一些二极管逆向恢复。ZVT电感上的电压为VO,因此电流上升至Iin所需要的时间为:

  

  1.1.2.2 t1-t2

  在t1处,Lr电流达到了IIN,且Lr和Cr开始产生谐振。该谐振周期在其电压等于零以前对Cr放电。漏极电压的dv/dt由Cr(Cr为外部CDS和COSS的组合)控制。Cr放电的同时流经Lr的电流不断增加。漏极电压达到零所需要的时间为谐振时间的1/4。在该周期结束时,主开关的主体二极管开启。

  

  1.1.2.3 t2-t3

  在该时间间隔开始时,开关漏极电压已达到0V,并且主体二极管被开启。流经该主体二极管的电流将由ZVT电感驱动。该电感上的电压为零,因此电流处于续流状态。此时,主开关被开启,以实现零电压开关。

  1.1.2.4 t3-t4

  在t3处,UC3855感应到QMAIN的漏极电压降至零,并在关闭ZVT开关的同时开启主开关。ZVT开关关闭以后,Lr中的能量被线性地从D2释放至负载。

  1.1.2.5 t4-t5

  在t4处,D2中的电流趋于零。当这种情况发生时,该电路就像一个传统升压转换器一样运行。但是,在一个实际电路中,Lr同驱动D1阴极(由于Lr的另一端被钳位控制至零)正极节点的ZVT开关COSS一起谐振。在ZVT电路设计部分将对这种影响进行讨论。

  1.1.2.6 t5-t6

  该级也非常像一个传统升压转换器。主开关关闭。QMAIN漏-源节点电容充电至VO,并且主二极管开始向负载提供电流。由于节点电容起初将漏极电压保持在零状态,因此关闭损耗被极大地降低了。

  由上述内容可知,这种转换器的运行仅在开启开关转换期间不同于传统升压转换器。主功率级组件并未出现比正常情况更多的电压或电流应力,而且开关和二极管均历经了软开关转换。通过极大地减少开关损耗,可以在不降低效率的情况下增加工作频率。二极管也可以在更低的损耗条件下工作,从而在更低温度、更高可靠性的条件下运行。该软开关转换还降低了主要由升压二极管硬关闭引起的EMI。

  1.1.3 控制电路要求

为了保持主开关的零电压开关,ZVT开关在Cr电压谐振至零以前必须为开启状态。通过使用一个相当于低线压和最大负载条件下

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top