模拟与数字电路使用混合信号的验证和测量方法
模拟与数字电路使用混合信号的验证和测量方法
无论是在计算机领域,通信领域还是消费电子领域,当我们随手拿来一块电路板时,都会发现其中所使用的器件是多种多样的,往往是混合了模拟器件和数字器件,模拟部分包括光、声、音、温度、压力等现实世界物理信号、电源信号、视频信号、AM/FM等调制信号等,数字部分则包括单片机,微处理器,可编程逻辑器件,DSP等,而象ADC,DAC,某些单片机等则集模拟信号和数字信号于一个器件上。这样的混合结构给我们的设计带来了强大的灵活性,但同时也给调试和测试带来了以下复杂性:
1、模拟信号的测试和验证需要仍然存在,但同时存在很多路的数字信号需要进行同时显示,验证和测试,尤其是需要验证控制信号有无在正确的时间,正确的控制相关的信号。
2、孤立信号越来越少,多路信号的关联性调试和验证在很多情况下是必须的,而模拟信号的速度往往低于数字信号,要求仪器在捕获一个慢信号完整周期的同时,还能支持很高的采样率,这就要求仪器有很深的存储深度和很多个通道,价位还可要可以被接受。
3、高速数字信号本身呈现模拟特征(如过冲、振铃等),需要进行信号完整性测试。
4、不同器件或芯片间的通信大量使用串行总线,如I2C,SPI,CA N,LIN,USB,SATA,PCI-E等,仪器要和串行通信协议同步才能更好的调试验证电路。
5、BGA等特殊封装形式使得很多信号无法直接测量,可编程器件的使用使得很多关键信号没有在管脚处引出。
安捷伦近年来一直致力于混合电路测试技术的研究,从而开发了混合信号示波器,该仪器与专业数码相机的功能类似:
1、广角镜头能捕获全方位的景色,拍下突发事件时,也清楚地记录下周围人物和环境。混合信号示波器(MSO)可全方位捕获模拟和数字信号多达18路和20路,判知异常信号和其他多路数字信号或模拟信号有没有关系。
2、800万CCD,一次成像,不仅可记下全景,而且可以对局部细节进行放大而不失真。对应混合信号示波器(MSO),标准配置的快响应深存储,可在一个屏幕上同时捕获或显示多达18或20个通道,对每一路的信号都是深度捕获,存储深度可达8MB,因此可放大几万倍来观察和分析细节。
自动快速对焦,让相机和所拍摄物迅速同步完成对焦。对应混合信号示波器的灵活触发功能可以让你把混合信号示波器(MSO)和被测对象的运行状态同步起来,比如,可与I2C,SPI等串行总线的协议同步,可与SDRAM控制命令,PCI总线命令,LCD驱动电路命令等同步。
下面我们来看一下混合信号示波器(MSO)到底是一种什么样的测试仪器:
一、由于混合信号电路本身的复杂性,即使您只需要观察一路信号的质量,数字示波器和模拟示波器也无法完成,比如,当你需要观察DDR SDRAM的某根数据线信号质量时,眼图分析是常用的手段,在分析时,示波器要首先和DDR SDRAM的读写操作同步,根据DDR SDRAM的命令(参见下表),这需要占用五个通道分别连接到RAS,CAS,CS,WE,CLK信号上,同时再使用另外一个通道来观察你所关心的数据信号眼图,结果如下图所示,混合信号示波器(MSO)轻松获取DDR SDRAM的连续8个读操作(8个眼图),这对于普通数字存储示波器(DSO)来说是不可能的,因为他没有足够多的通道锁定SDRAM的操作,(为让整个显示更加清楚,我们故意没有显示那5路作触发用的信号)。
二、混合信号示波器解决的另一个难题是,数字存储示波器(DSO)或模拟示波器,可以判别信号是否正常,却不能告诉你信号是在什么时候变得不正常,反过来讲,它不能帮助你验证在电路特定的运作状态下,关键信号的质量是否过关,而这对混合信号示波器来讲,则是再简单不过的事,如下图所示,安捷伦的研发工程师用混合信号示波器,发现其PCI总线数采插卡在DMA控制器将总线控制权交回CPU后,内部的固化软件偶尔会跑飞,根本原因是这时时钟会出现不应该的幅值跌落,导致电路误认为新的时钟周期到来,从而产生误动作,据此,工程师又进一步发现导致该幅值跌落的原因,从而解决了问题。使用时,只需注意把控制信号连接到逻辑通道上,根据PCI总线命令设定触发条件即可。
三、上面的功能,实质上是混合信号示波器可以与并行总线的控制命令相同步,混合信号示波器可以解决的第三个难题是,与串行总线同步,比如,I2C仅由两根线(时钟线SCL,数据线SDA)组成,如何判断和验证电路可以正确的完成某个地址(如0x50),读出某个数据(如0x50),混合信号示波器(如MSO6054A)完全可以根据I2C的协议,来判断,两个器件是否透过I2C总线完成通信,对于其他总线,如SPI,CAN也是同样的
- “优化”使模拟IC达到极限性能(01-23)
- 单收/单发RS-232接口芯片 ADM101E及其应用(01-25)
- 通信电源监控系统模拟量采集模块的设计(01-05)
- 设计高性能、低成本的笔记本电脑处理器电源 (05-12)
- 利用0至1V模拟乘法器实现电池供电系统的精确功率管理(05-05)
- 采用新型放大器实现高性能的电流检测(05-10)