微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于Labwindows/CVI和Matlab高频衰减模型建立与应

基于Labwindows/CVI和Matlab高频衰减模型建立与应

时间:11-22 来源:互联网 点击:


2.2 高频信号传输通道功率衰减建模
在测量数据处理中,常常遇到根据测量数据确定给定模型的参数;为离散测量数据建立连续模型2类问题。本文的数据处理工作属于第2种,在这类问题的测量数据处理方法中,比较好的是选取能够描述测量数据特征的某类曲线,在一定意义下从这类曲线中寻求一条“最好”的曲线作为实验数据对应的连续模型,并给出该连续模型对应的参数。这种处理思想被称为“拟合”,本文将采用经典的最小二乘拟合方法进行数据处理。
2.2.1 最小二乘拟合
以两元模型为例,假设x和y分别为测量数据矢量,x*和y*分别为对应的真值矢量,f为拟合模型,θ为模型参数矢量,则:

由式(2)列出对应的正规方程并求解就可以得出模型参数的最小二乘估计值。最小二乘拟合的理论基础是高斯-马尔可夫定理,其发展已有约两百年的历史,在数据处理中被广泛应用。最小二乘估计具有无偏性和方差最小的性质,且与测量矢量所服从的概率分布无关,因而当测量矢量的概率分布形式不能严格知道,无法使用经典统计中的参数估计理论时,最小二乘拟合成为了数据处理的一种简便方法,同时这也是最小二乘拟合在数据处理中被广泛使用的原因。基于上述原因,本文选取最小二乘拟合方法对测试数据进行处理。
2.2.2 Matlab建立数学模型
首先,以频率f=[0.03,0.1,0.5,1.0,1.5,2.0,2.5,2.7],以及各频率点对应的功率衰减平均值p=[0.948,1.934,6.995,12.131,13.294,14.269,14.518,14.720]为数据点,画出二维空间的散点图,如图2所示。

根据其分布形状,选取三次多项式作为拟合曲线模型函数:

具体实现步骤:
(1)将f=[0.03,0.1,0.5,1.0,1.5,2.0,2.5,2.7],p=[0.948,1.934,6.995,12.131,13.294,14.269,14.518,14.720]写入Matlab命令窗口;
(2)输入命令函数cftool,回车弹出“Curve Fitting
Tool”窗口,如图3(a)所示;
(3)点击按钮“Data”设置拟合数据分别为f,p,如图3(b)所示;

(4)点击按钮“Fitting”,弹出窗口“Fitting”,选取拟合函数“cubic polynomial”,点击“Apply”即可得到拟合数据模型,如图3(c)所示。

3 LabWindows/CVI实现软件补偿
根据依据最小二乘原理拟合得到的高频通道功率衰减模型,采用LabWindows/CVI编程对高频测试仪器进行控制,实现信号功率的补偿,其面板设计如图4所示,软件测试算法流程如图5所示。

以此试验平台为例,外部信号源输出(900 MHz,-5.60 dBm)的高频信号。平台对此信号进行测量,测量结果如图4所示:仪器测得功率为-16.5 dBm,将f=900 MHz带入式(4),计算的修正值为10.94 dB,所以最终测试结果为(-16.5+10.94)dBm,即-5.56 dBm。这一数据与-5.60 dBm相比较,满足平台测试精度要求。

4 结语
本文在结合Matlab和LabWindows/CVI两者优势的基础上,采用了软件补偿的方式解决了高频功率衰减问题。首先利用Matlab强大的数学处理能力,以最小二乘拟合原理对功率衰减数据进行处理,得到了较高精度的功率衰减数学模型,之后采用LabWindows/CVI设计了高频测试仪器面板,经编程实现了功率测试补偿。经试验验证,该方法能有效满足平台测试精度要求,为ATS测试高频信号提供了一种实用的方法。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top