示波器的差分信号测量
带宽
差分放大器和单端示波器放大器一样,常可以对带宽限制进行控制。高增益放大器可以提供低通频率的选择。带宽限制可减少高频噪声成分并使低频的降低减至最小。带宽限制滤波器位于输入信号被转换为单端之后。所以,使用带宽限制不会增加高频的输入共模范围。
术语
ADC - 模数转换器。数字存储示波器需要将模拟输入转换到数字域,模数转换器是数字存储示波器的“心脏”部件。ADC 的许多特性(如采样率、分辨率、精度和线性度等)均直接与示波器的性能有关。
平衡式- 通过一对线进行传输的信号,每条线的源阻抗相同。地线不可用作信号的返回路径。
带宽限制器- 一种用户可选的滤波器,用于衰减有用带宽之外的噪声。除非特别说明,滤波器均为低通拓扑,单极(-6 dB/octave)滚降。
钳位电路- 一种限制放大器输出电压的摆幅使之工作于线性范围的电路。通常采用减少过载恢复时间的方法实现。
削波- 放大器再现输入信号时由于输出电压范围不够而产生的失真的波形。正如其名称所示,输出波形好象经过了“切削”。
共模- 输入信号中差分放大器的两个输入端公用(振幅与相位均相同)的成分。理想的差分放大器抑制所有的共模信号。
共模范围- 差分放大器可以抑制的共模信号的最大电压(相对于地)。共模范围通常比差模范围大。取决于放大器的拓扑结构,共模范围可能随增益而变化。
共模抑制- 差分放大器对输入信号中共模成分的消除功能。
共模抑制比(CMRR) - 对差分放大器抑制共模信号的能力的量度。CMRR 的计算公式为:
CMRR = 差模增益/ 共模增益
由于共模抑制能力一般随频率的增加而降低,故通常给出特定频率下的CMRR 值。
差分放大器- 一种三端增益电路,可以处理两个输入端之间不相同的信号成分,同时忽略两个输入端上相同的信号成分。
差模- 在差分放大器两个输入端之间不相同的信号。差模信号(VDM)可以表示为:
VDM = (V+Input ) - (V-Input )
差模范围- 差分放大器可以接受而且不会使输出过载的差分输入信号的最大振幅。若超出差模范围,放大器则将信号削波或钳位。差模范围通常随放大器增益的增加而减少。
差分偏移- 高增益差分放大器中使用的一种电路,用于抵销出现于差分输入信号中的直流偏压。差分偏移电路电气上相当于在一条输入线上串接一只可调的电池。
差分探头- 为差分应用专门设计的探头。有源差分探头在其触点处包含一个差分放大器。无源差分探头用于差分放大器,并可使两个信号通道上的直流和交流衰减校准到精确地互相匹配。
浮动信号- 不参照地电位的信号。浮动信号不能作为单端仪器的输入而直接测量。
浮动示波器- 使得示波器的保护接地系统失效以便进行浮动测量的用法。由于整个示波器的机箱与探头的“接地”夹同电位,故这种危险的做法可能导致用户遭受电击。
接地环路- 多个低阻抗通路接到同一个地电位而形成的电路。接地环路起到变压器短路线匝的作用,可以感应出循环的地电流。这些电流可使电路内的地电位发生轻微的改变。
隔离器,隔离探头- 一种利用单端接地仪器进行两点的浮动电压测量的装置。其实现方法是将输入信号转换为光的形式和/或磁的形式(通过变压器)。
最大共模转换速率- 在差分放大器或隔离器输入端上的共模成分变化速率(dv/dt)的上限。上升时间超出最大共模转换速率指标的信号可能会使输出信号产生极度的失真。此指标有时称为仪器的最大非破坏性极限。
准差分- 建立差分放大器的一种方法,做法是将两个常规示波器的输入通道相加(其中的一个通道设置为反转方式)。为了产生有意义的结果,两个通道必须设置在相同的“电压/ 分度”档位。与真正的差分放大器相比,准差分方式的共模范围有限,而且CMRR 值较低,尤其是在高频段。
偏压补偿(比较电压 ) - 某些差分放大器提供的一种配置,将精密校准的电压源接入放大器的一个输入端。此法可提供校准偏移范围极大的单端放大器。与差分偏移不同,偏压补偿方式只能完成单端(以地为参考)测量。
单端测量- 以地为参考点测量电压电位的方法。常规示波器的输入端只能进行单端测量。
- 开关电源的测量中安全性解决方案 (03-06)
- DC/DC模块的电源纹波测量(03-07)
- 如何抑制开关电源纹波的产生 (10-03)
- 数字转换器噪声对示波器测量的影响(06-03)
- 探讨:干扰噪声系统基本知识(11-12)
- 200M的示波器竟然测不了10M的晶振?(04-04)