示波器的差分信号测量
图15. 随时间变化的磁场穿过间隔开的引线时感生出电压,犹如变压器的线圈。此电压作为差分成分输入放大器并累加到真正的VDM 信号- 上。
图16. 将输入引线绞扭在一起,环路面积非常小,故穿过其中的磁场较少。感应电压往往出现在VCM 通道,可以被差分放大器抑制。
接地
大多数差分放大器的输入连接器是外壳接地的BNC连接器。在使用探头或同轴输入线缆连接时,总会有如何接地的问题。由于测量应用千差万别,故没有严格的标准可循。
在测量低频的低电位信号时,地线一般最好是只接在放大器一侧,而不要接在两个输入端上。这样可给感应到屏蔽层的电流提供返回的通路,但又不会形成接地环路而对测量或被测设备形成干扰。
在高频部分,探头的输入电容与引线电感形成串联“空腔”谐振电路,并可能结成环状。在单端测量中,使用尽可能短的接地线可使这种效应减至最小。这样会降低电感量,有效地增高谐振频率,使其有望超出放大器的带宽。差分测量是在两个探头接触点之间进行的,其中并不涉及接地的概念。然而如果因为共模成分的快速上升而产生了环,则使用短的接地线可减少谐振电路中的电感量,从而减少了环状成分。在有些情况下,也可以用附加接地线的方法减少快速差分信号所产生的环。如果共模源在高频时对地的阻抗很低,也就是被电容器旁路,就属于这种情况。如其不然,附加地线可能会使情况变得更糟!如果发生了这种事,可试着将探头一起在输入端接地。这样可以通过屏蔽降低有效电感。
当然,将探头的地接到电路上可能会生成接地环路。在测量高频信号时这通常不会产生问题。测量高频时的最好忠告就是试着用和不用接地引线进行测量;然后采用能给出最好结果的设置。当把探头接地引线接到电路时,要切记将它接地!在使用差分放大器时很容易忘记地线的连接在哪里,因为它们可以探查电路的任何地方而不会有发生损害的危险。
图16. 源阻抗不平衡所造成的影响。+输入衰减器是从0Ω驱动的,但-输入衰减器是从3kΩ以下驱动的。结果与900kΩ相加,使衰减增加而CMRR降低。
输入阻抗对CMRR 的影响
任何源阻抗的作用就是与输入电阻(直流)和输入电容(交流)组成一个分压器。对单端测量来说,阻抗的影响一般可以忽略,因为误差很少能达到1%。但对差分测量,这个小的误差造成输入增益的不匹配,这会减少共模抑制的能力(见图17)。
测量差分放大器的CMRR 指标通常是经 过T 型BNC 连接器共同驱动两个输入端。这样向输入端看进去的阻抗差实际为零。现实中的信号源理应具有相同的驱动阻抗。但这很难做到。于是,CMRR 的实际性能要比放大器的指标低得多。
如果放大器的输入阻抗、衰减倍数和源阻抗全都已知,那么通过计算每个输入分支的分压比就可以确定实际的CMRR。不过,若只对测量的实绩做出主观的判断会更容易些。
很多高增益放大器都可以配置成仪器用放大器。仪器用放大器没有输入衰减器,本身的输入电阻是无限大(>1012 Ω)。在源阻抗相当高时(如生理学实验)这种方式可以大大改善低频的CMR。尽管仪器用放大器的输入电阻为无限大,其输入电容还是有的。随着共模频率的增加,信号源的高阻抗对CMR的改善效果将迅速退化。由于仪器用放大器没有输入衰减器,其共模范围和差模范围都比较狭窄。
图18. 消费音频电子部件中的VCM。这些设备通常使用双芯电源线,其机箱和电路都是浮动的。
共模范围
任何放大器都有可能被过驱动,并引起输出的“钳位”。当输入的差模信号大到足以强制放大器超出其输出动态范围时,差分放大器也会发生同样的效应。差分放大器还要承受另一种过载,即超出输入共模范围。当预期的信号所依附的电压(VCM)超出了放大器的输入共模范围时就会发生这种情况。
由于放大器抑制了共模信号,所以动态范围受到输入级而不是输出摆幅的限制。带输入衰减器的放大器共模范围比差模范围大。由于共模成分在测量中是看不到的(但愿如此),所以共模范围过载对于用户可能并不明显。当共模成分为直流时尤其如此。在超出VCM范围时,有些放大器的拓扑仍然近似地给出带有明显增益误差的差分信号。由于波形貌似正确,很多用户被这种错误的测量结果所愚弄。
有些放大器带有过载指示器以警告用户发生了共模过载的情况。一个好的方法就是在进行重要的测量之前先检验共模是否在规定的范围之内。只要将一个输入端接地并且用放大器本身测量共模成分就可以很容易地进行检验。然后再对另一个输入端重复此过程。
测量完全浮动信号
完全浮动(没有任何接地)的信号源在用差分放大器进行测量时会造成特殊的问题。常见的例子有电池供电的电子设备、消费音频部件和实验用生理标本。由于没有分支阻抗接地,该地区的任何交流电场都可以通过电容耦合到被测设备中去(参见图18)。在这种测量环境中充斥着从荧光灯和建筑物配线中辐射出来的线路频率电场。当这种电场耦合到被测设备中时,便产生了共模电压。若耦合量足够大而放大器的输入阻抗又比较高,就可能在不经意间超出了放大器的共模范围。当放大器配置成仪器用放大器时尤其如此,因为对线路频率的负载阻抗近乎无限大。
通过提供分支阻抗接地、减少电容性耦合或者减少场强等都可以避免出现过载的情况。增加到地的并联支路是最为容易的方法。这种方法不需要直接短路,通常有10 kΩ的电阻就足够了。如果加入分支阻抗对被测设备或测量过程造成了干扰,可以试着将被测设备用接地的金属屏蔽物封装起来以减少电容性耦合。这实际上是加了一个给交流电场提供接地通路的法拉第屏蔽。最后一个方法是设法将场强减至最小。作为一个好的开始,可以用白炽灯替代荧光灯以及使电路配线与被测设备之间保持最大距离。
- 开关电源的测量中安全性解决方案 (03-06)
- DC/DC模块的电源纹波测量(03-07)
- 如何抑制开关电源纹波的产生 (10-03)
- 数字转换器噪声对示波器测量的影响(06-03)
- 探讨:干扰噪声系统基本知识(11-12)
- 200M的示波器竟然测不了10M的晶振?(04-04)