微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 准方波谐振电源的谷底跳频问题解决方案v

准方波谐振电源的谷底跳频问题解决方案v

时间:01-29 来源:互联网 点击:

的NCP1380)的适配器开关频率的变化过程。输入电压为均方根115 V时,开关频率漂移限制在65 kHz到95 kHz之间,且不须使用任何频率钳位。

  

  图6:带谷底锁定功能的控制器开关频率相对于输出功率的变化

  这种技术的另一优势在于优化了整个负载/输入电压范围(特别是高输入电压条件下)的能效。高输入电压时,不再有零电压开关工作:开关损耗增加。因此,举例来说,在第二个谷底而不是在第一个谷底工作或是在第三个谷底而不是在第二个谷底工作更有优势,从而使电源能够以较低的频率开关。图7很好地描绘了这种情况,此图中显示了控制器在第三个谷底或第四个谷底工作时,输出功率在24 W到34 W之间时的能效变化。从图中可以看出,在第四个谷底导通MOSFET提供的能效比在第三个谷底导通MOSFET高出0.3%。开关频率在第四个谷底时比在第三个谷底时低15 kHz。

  

  图7:第三个谷底工作和第四个谷底工作实际应用案例中的能效差异

在集成电路中应用谷底锁定技术

  安森美半导体制造的准谐振控制器NCP1379和NCP1380中应用了谷底锁定技术。实际上,使用了一组比较器在反馈引脚监测电压,并将信息馈送给计数器。每个比较器上的磁滞会锁定工作谷底。因此,就给定输出功率而言,有两种可能的工作点:确保稳定工作而没有谷底跳频。为了进一步提升轻载能效,基于压控振荡器的频率反走电路在输出功率减小时降低开关频率。下图显示的是NCP1380控制的19 V、60 W准谐振适配器的电路图。

  

  图8:应用NCP1380的60 W适配器电路图

  由于使用了谷底锁定技术,这控制器在负载下降时改变谷底(从第一个谷底到第四个谷底),而不会有任何不稳定问题。这帮助扩展准谐振工作范围,在230 Vrms时功率低至20 W。下面的过滤器截图显示了230 Vrms输入电压下负载降低时的工作谷底。没有观测到谷底跳频。

  

  图9:60 W、230 V rms时的第一个谷底 图10: 45 W、230 V rms时的第二个谷底

  

  图12: 24 W、230 V rms时的第四个谷底 图11: 30 W、230 V rms时 的第三个谷底

  锁定技术优化了完整线路电压/负载范围下的能效,并提升了总体能效:

  Vin = 115 V rms时,测得的平均能效为87.9%

  Vin = 230 V rms时,平均能效为87.7%,高于“能源之星”EPA 2.0标准中规定的87%限制值

  输出轻载时,通过频率反走电路进一步提升了能效。在0.7 W输出功率情况下,适配器从交流主电源消耗的功率低于1 W。下表总结了轻载时的能效:

  表I:轻载能效

  

  频率反走技术通过降低开关频率,也降低了适配器在待机模式(表示没有输出负载连接至适配器)下消耗的功率。230 Vrms时,适配器在待机模式下从交流主电源(含X2电容的放电电阻)消耗的功率为85 mW,这对未配备高压启动电路的控制器而言是相当优秀的结果。

  表II:空载能耗

  

  结论

  传统准谐振控制器容易受到所谓的谷底跳频问题的影响,因为谷底跳频会产生大小不同的开关周期,并在变压器中产生可听噪声。在某些线路电压/负载条件下,当逐周期能量平衡所需的关闭时间降到两个邻近谷底之间时,会出现谷底跳频。为了解决这个问题,本文介绍了谷底锁定技术。这种技术使电源能够在给定输出负载条件下选择两个可能的稳定工作点,不仅不稳定问题随之消失,而且在结合使用压控振荡器的情况下,这种应用中的能效数值明显升高。基于NCP1380控制器的实际测试结果证实了这种方法的有效性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top