微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 是不是每次测量一个新的项目前都必须做校准

是不是每次测量一个新的项目前都必须做校准

时间:03-08 来源:互联网 点击:
一、 近场测量概念及测量对控制系统的要求

  近场测量是IEEE协会规定的标准测量方法,该方法因其自身的优点在现代天线测量中得到了日益广泛的应用。由于测量在近区进行,天线的远区辐射特性需经过严格的数学变换得到,所有的测量误差都可以看成近场幅度和相位的误差[1]。而探头和被测天线的定位误差是影响测量精度的主要因素之一。因而对控制探头移动的取样架和控制待测天线定位的转台提出了较高的定位精度要求。该要求接近于ISO规定的加工中心定位精度标准。(半闭环数控:分辨率1μm,定位精度7μm/300mm,重复定位精度4μm)。立柱式近远场测量系统以PMAC(Programmable Multiple Axes Controller)可编程多轴控制器为CNC模块,实现了探头水平、垂直、伸缩、极化和转台方位、俯仰、天线极化共七轴的伺服驱动和精确定位。

  二、 系统硬件组成

  近场测量系统是计算机与信息处理技术、自动控制技术、微波测量技术和机械技术等多学科领域交叉的技术密集型系统工程。硬件部分由微波测量、伺服驱动和机械(取样架及转台)子系统组成。

  1. 机械子系统

  近场测量对取样架和转台设计要求具有高定位精度和良好的动态响应特性,即响应快且稳定性好。因此我们在设计中提出无间隙、低摩擦、低惯量、高刚度、高谐振频率等要求,具体实现措施为:

  * 采用低摩擦阻力的传动部件和导向部件。如X,Y,Z向的滚珠丝杠副和滚动直线导轨;

  * 缩短传动链,提高传动与支撑刚度。如用加预紧的方法提高滚珠丝杠副和滚动直线导轨副的传动与支撑刚度;采用大扭矩的交流伺服电机直接与丝杠连接以减少中间传动机构;

  * 采用消隙齿轮,缩小反向误差。

  2. 伺服驱动

  伺服驱动部分采用松下A系列交流伺服电机和驱动器,具有功率密度大、快速性好、位置控制精度高、可靠性高、寿命长等优点。

  3. RF部分

  从RF信号源发出的射频能量通过低耗电缆送到待测天线,并用定向耦合器从信号输出口耦合出一小部分功率送到幅相接收机作为幅度和相位的基准信号。而待测天线辐射的一小部分功率被校准过的探头天线接受,并由低耗电缆送至接收机。

  Anritsu 37100C系列微波矢量网络分析仪,具有很强的灵活性,能满足大多数接收机测量的要求。它除了具有测量4个S参数的能力外,还在接收机的前端增加了一个反射计,37147C覆盖的频率范围是22.5MHz到20GHz。新一代的VNA增加了一个高速处理器,并具有快速功率扫描功能。使用37147C的快速CW方式,通过GPIB告诉获取数据,能提高远场测量能力。采用内部触发能实现0.8ms/点,采用外部触发能实现1.2ms/点,采用GPIB触发能实现1.5ms/点。

  对于近场测量,采用了内部缓冲器数据采集。它能从多扫描中存储工作信道的测量数据,而不必等到每个扫描结束的时候再进行同步和采集数据。37147C最多能存储50000个测试数据点,每个点包含IEEE754的4个字节浮点数字的实部和虚部。

  4. 控制系统

  计算机通过PC-PMAC多轴控制器来控制伺服电机的定位。GPIB接口板用于PC与RF设备之间的通讯。PC-PMAC多轴控制器完成两个基本功能:1)给接收机发TTL触发脉冲,通知它进行采样测量。该功能由采样程序自动设置。2)控制扫描架和天线转台的运动。根据不同的测量目的,该功能要求输入相应的测试参数。

  PMAC多轴控制器采用开放式结构,允许用户通过参数设置来改变运动控制行为。系统采用半闭环方式,根据输入的位置误差由PID参数、速度前馈、加速度前馈、摩擦前馈增益等参数来确定输出控制信号。由于不适当的参数会造成系统的不稳定和机械振动,因此参数整定时应按一定的步骤和原则进行。

  控制软件能够支持PC与RF设备之间的GPIB通讯和数据传输。当探头天线位于测量网格点上或扫频方式中不同频点建立时,接收机被触发。在采样位置上PMAC多轴控制器通过设置输出变量来产生触发脉冲。探头天线的运动轨迹和采样点位置由测试参数决定。

三、 工作原理

  1. 半闭环

  取样架和转台的伺服驱动是按闭环反馈方式工作的,采用交流伺服电机驱动,同时配有速度反馈和位置反馈。扫描中随时检测取样架/转台的实际位置,并及时反馈给控制卡中的比较器,将其与插补运算所得的指令位置相比较,它们的差值作为控制信号驱动取样架/转台运动,来消除位置误差。

  作为位置检测部件的增量式旋转编码器安装在伺服电机的轴端,因而系统是半闭环的。由于大部分机械传动环节未包括在环路内,因此可获得较稳定的控制特性。尽管丝杠和齿轮的传动误差不能通过反馈得到及时校正,但可采用软件定位补偿的方法来适当提高精度。

探头的定位精度和速度是近场测量系统的两个重要指标,它们直接关系到

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top