降低热插拔控制电路的电路电流
时间:03-17
来源:互联网
点击:
摘要:当热插拔控制电路的输出发生短路时,会触发内部断路器功能并断开电路。但在内部断路器做出反应之前,刚开始的短路电流可能达到数百安培。通常热插拔控制器断路器的延迟时间是200ns至400ns,再加上栅极下拉电流有限,栅极关闭时间可能需要10μs至50μs。在此期间,会产生较大的短路电流。
本应用笔记给出了一个简单的外部电路,它能将初始电流尖峰降至最小并在200至500ns内隔离短路故障。

图1. 典型的热插拔控制电路
低速比较器的最低触发门限比正常工作电流高38%,快速比较器的短路触发门限是工作电流的6至8倍。
快速比较器的延迟时间为350ns,这一时段的短路电流尖峰仅受限于电路阻抗。此后电流缓慢下降,直至完全隔离短路故障,3mA栅极下拉电流限制了MOSFET M1栅极电容(3nF至4nF)的放电速率。短路电流在15μs至40μs内缓慢减小,与此同时,栅极电压从19V被拉到接近地电位。
(a) 电源ESR,(b) 短路状态,(c) RSENSE阻值,(d) M1的RDS(ON),(e) M1的ID(ON)。
以上参数均采用最接近实际情况的取值,可以计算出短路时电路的总阻抗:
(电源ESR ≈ 4mΩ) + (短路环节 ≈ 3mΩ) + (RSENSE = 5mΩ) + (RD(ON) ≈ 4mΩ) ≈ 16mΩ。
这时,短暂的峰值电流为:ISC ≈ 750A,并取决于电源的储能电容(带2200μF电容的低ESR背板以750A电流放电时,1μs内电压仅降低340mV)。这种情况下,实际的峰值ISC会由M1的ID(ON)限制到400A左右。
ID(ON)取决于VGS,因此有必要检查电路,以确定这一时段的栅-源电压。MAX4272包含一个内部电荷泵,可使正常工作时的栅极电压高出VIN约7V。因而MOS管导通时VGS = 7V。
短路的第二个影响是它实际上增加了VGS。短路在M1的漏-源之间引入了一个电压阶跃 -等于总输入电压的一部分。由于M1的RD(ON)约为预估的短路总阻抗的1/3,此时施加的VDS约为12V阶跃电压的1/3。由漏-栅电容cdg和栅-源电容cgs组成的分压器会将该阶跃电压的一部分转移到栅极。经过适当计算,可知引入的额外ΔVGS为300mV至500mV,但短路期间进行的测试表明该值可高达ΔVGS = +3V。
至此可以清楚地看出,牢固可靠的短路会在几微秒至几十微秒内产生数百安培的电流。
设计者可能希望将ISC峰值限制在50A,持续时间小于1μs,但如果不增加更快速的比较器和栅极下拉电路的话,这一要求是不切实际的。然而,可以考虑对电路做一些简单的修改。

图2. 具有快速栅极下拉的热插拔控制器

图3. 具有快速短路峰值电流限制功能的热插拔控制器
M1栅极和源极之间的C2可进一步减小发生短路时作用在栅极上的正向瞬态阶跃电压,该电容的取值范围为10nF至100nF。
齐纳二极管D1用来将VGS限制到7V (MAX4272提供该电压)以下的某个值。
虽然齐纳二极管D1在偏置电流为5mA时的额定值为5.1V,但在本电路中,MAX4272仅能输出100μA的栅极充电电流(齐纳二极管偏置电流),因此D1会将VGS限制在3.4V左右。受到限制的VGS可降低ID(ON),当然RD(ON)会增大一些。根据MOS管的数据资料可知:VGS为3.4V时RD(ON)为5mΩ,VGS为7V时RD(ON)为3mΩ。这样可以更快地关断M1。
D1和C2也可以用在图1和图2的电路中,以降低短路时的ID(ON)。
但要产生牢固可靠并且重复性较好的短路情况非常富有挑战性。本测试对以下几种制造短路的方法进行了评估。
本应用笔记给出了一个简单的外部电路,它能将初始电流尖峰降至最小并在200至500ns内隔离短路故障。
典型热插拔电路
我们来考察采用MAX4272构建的+12V、6A典型热插拔控制电路(图1)。根据MAX4272的规格指标,可知其包含触发门限分别为50mV和200mV的低速和快速比较器(整个温度范围内,容限分别为43.5mV至56mV和180mV至220mV)。触发电流大小通常为工作电流的1.5至2.0倍,选择RSENSE = 5mΩ。RSENSE允许有5%的容限,过载条件下低速比较器的触发电流范围是8.28至11.76A;发生短路时,快速比较器的触发电流范围是34A至46.2A。
图1. 典型的热插拔控制电路
低速比较器的最低触发门限比正常工作电流高38%,快速比较器的短路触发门限是工作电流的6至8倍。
快速比较器的延迟时间为350ns,这一时段的短路电流尖峰仅受限于电路阻抗。此后电流缓慢下降,直至完全隔离短路故障,3mA栅极下拉电流限制了MOSFET M1栅极电容(3nF至4nF)的放电速率。短路电流在15μs至40μs内缓慢减小,与此同时,栅极电压从19V被拉到接近地电位。
峰值短路电流
最初350ns内的峰值电流由以下因素决定:(a) 电源ESR,(b) 短路状态,(c) RSENSE阻值,(d) M1的RDS(ON),(e) M1的ID(ON)。
以上参数均采用最接近实际情况的取值,可以计算出短路时电路的总阻抗:
(电源ESR ≈ 4mΩ) + (短路环节 ≈ 3mΩ) + (RSENSE = 5mΩ) + (RD(ON) ≈ 4mΩ) ≈ 16mΩ。
这时,短暂的峰值电流为:ISC ≈ 750A,并取决于电源的储能电容(带2200μF电容的低ESR背板以750A电流放电时,1μs内电压仅降低340mV)。这种情况下,实际的峰值ISC会由M1的ID(ON)限制到400A左右。
ID(ON)取决于VGS,因此有必要检查电路,以确定这一时段的栅-源电压。MAX4272包含一个内部电荷泵,可使正常工作时的栅极电压高出VIN约7V。因而MOS管导通时VGS = 7V。
短路的第二个影响是它实际上增加了VGS。短路在M1的漏-源之间引入了一个电压阶跃 -等于总输入电压的一部分。由于M1的RD(ON)约为预估的短路总阻抗的1/3,此时施加的VDS约为12V阶跃电压的1/3。由漏-栅电容cdg和栅-源电容cgs组成的分压器会将该阶跃电压的一部分转移到栅极。经过适当计算,可知引入的额外ΔVGS为300mV至500mV,但短路期间进行的测试表明该值可高达ΔVGS = +3V。
至此可以清楚地看出,牢固可靠的短路会在几微秒至几十微秒内产生数百安培的电流。
设计者可能希望将ISC峰值限制在50A,持续时间小于1μs,但如果不增加更快速的比较器和栅极下拉电路的话,这一要求是不切实际的。然而,可以考虑对电路做一些简单的修改。
- 在内部快速比较器最初的350ns响应时间内,电流会由ID(ON)限制在几百安以内,此时可以通过增加一个简单的外部电路来加快栅极放电,从而将短路持续时间限制≤ ?μs。
- 或者用一个稍复杂的外部电路将Isc峰值限制在100A范围内,并且持续时间≤ 200ns。
快速栅极下拉电路限制大短路电流的持续时间
只需增加一个PNP型达林顿管Q1,即可极大地缩短大短路电流的持续时间,如图2所示。二极管D1允许栅极在导通状态下正常充电,而关断时控制器的3mA栅极放电电流改为直接驱动Q1的基极。然后Q1在约100ns时间内迅速完成栅极放电。这样,发生短路时的大电流持续时间大为缩短,仅略大于快速比较器350ns的延迟时间。
图2. 具有快速栅极下拉的热插拔控制器
快速限流电路
借助图3所示的电路,可以将短路电流限制在约100A以下,持续时间小于200ns。当RSENSE两端的电压差达到约600mV时,PNP型晶体管Q1a将触发并驱动NPN型晶体管Q1b,从而使M1的栅极电容快速放电。
图3. 具有快速短路峰值电流限制功能的热插拔控制器
M1栅极和源极之间的C2可进一步减小发生短路时作用在栅极上的正向瞬态阶跃电压,该电容的取值范围为10nF至100nF。
齐纳二极管D1用来将VGS限制到7V (MAX4272提供该电压)以下的某个值。
虽然齐纳二极管D1在偏置电流为5mA时的额定值为5.1V,但在本电路中,MAX4272仅能输出100μA的栅极充电电流(齐纳二极管偏置电流),因此D1会将VGS限制在3.4V左右。受到限制的VGS可降低ID(ON),当然RD(ON)会增大一些。根据MOS管的数据资料可知:VGS为3.4V时RD(ON)为5mΩ,VGS为7V时RD(ON)为3mΩ。这样可以更快地关断M1。
D1和C2也可以用在图1和图2的电路中,以降低短路时的ID(ON)。
测试方法-造成短路
没有什么比制造短路更简单了。但要产生牢固可靠并且重复性较好的短路情况非常富有挑战性。本测试对以下几种制造短路的方法进行了评估。
- 不一样的热插拔控制器(04-26)
- 热插拔电路的过热保护方案性能比较(05-12)
- 基于PCI9054和LTC4240的CPCI总线接口设计(05-13)
- 利用PCI1510实现PCI板卡的热插拔测试(05-23)
- 四通道I2C多路复用器提供了地址扩展、总线缓冲和故障管理(06-15)
- 高可靠性电源系统的热插拔原理和应用(11-14)
鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...
栏目分类