微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > MATLAB入门教程之数值分析

MATLAB入门教程之数值分析

时间:03-27 来源:互联网 点击:

数值分析

2.1微分

diff函数用以演算一函数的微分项,相关的函数语法有下列4个:

diff(f) 传回f对预设独立变数的一次微分值

diff(f,'t') 传回f对独立变数t的一次微分值

diff(f,n) 传回f对预设独立变数的n次微分值

diff(f,'t',n) 传回f对独立变数t的n次微分值

数值微分函数也是用diff,因此这个函数是靠输入的引数决定是以数值或是符号微分,如果引数为向量则执行数值微分,如果引数为符号表示式则执行符号微分。

先定义下列三个方程式,接著再演算其微分项:

>>S1 = '6*x^3-4*x^2+b*x-5';

>>S2 = 'sin(a)';

>>S3 = '(1 - t^3)/(1 + t^4)';

>>diff(S1)

ans=18*x^2-8*x+b

>>diff(S1,2)

ans= 36*x-8

>>diff(S1,'b')

ans= x

>>diff(S2)

ans=

cos(a)

>>diff(S3)

ans=-3*t^2/(1+t^4)-4*(1-t^3)/(1+t^4)^2*t^3

>>simplify(diff(S3))

ans= t^2*(-3+t^4-4*t)/(1+t^4)^2

2.2积分

int函数用以演算一函数的积分项, 这个函数要找出一符号式 F 使得diff(F)=f。如果积

分式的解析式 (analytical form, closed form) 不存在的话或是MATLAB无法找到,则int 传回原输入的符号式。相关的函数语法有下列 4个:

int(f) 传回f对预设独立变数的积分值

int(f,'t') 传回f对独立变数t的积分值

int(f,a,b) 传回f对预设独立变数的积分值,积分区间为[a,b],a和b为数值式

int(f,'t',a,b) 传回f对独立变数t的积分值,积分区间为[a,b],a和b为数值式

int(f,'m','n') 传回f对预设变数的积分值,积分区间为[m,n],m和n为符号式

我们示范几个例子:

>>S1 = '6*x^3-4*x^2+b*x-5';

>>S2 = 'sin(a)';

>>S3 = 'sqrt(x)';

>>int(S1)

ans= 3/2*x^4-4/3*x^3+1/2*b*x^2-5*x

>>int(S2)

ans= -cos(a)

>>int(S3)

ans= 2/3*x^(3/2)

>>int(S3,'a','b')

ans= 2/3*b^(3/2)- 2/3*a^(3/2)

>>int(S3,0.5,0.6)

ans= 2/25*15^(1/2)-1/6*2^(1/2)

>>numeric(int(S3,0.5,0.6)) % 使用numeric函数可以计算积分的数值

ans= 0.0741

2.3求解常微分方程式

MATLAB解常微分方程式的语法是dsolve('equation','condition'),其中equation代表常微分方程式即y'=g(x,y),且须以Dy代表一阶微分项y' D2y代表二阶微分项y'' ,

condition则为初始条件。

假设有以下三个一阶常微分方程式和其初始条件

y'=3x2, y(2)=0.5

y'=2.x.cos(y)2, y(0)=0.25

y'=3y+exp(2x), y(0)=3

对应上述常微分方程式的符号运算式为:

>>soln_1 = dsolve('Dy = 3*x^2','y(2)=0.5')

ans= x^3-7.500000000000000

>>ezplot(soln_1,[2,4]) % 看看这个函数的长相

>>soln_2 = dsolve('Dy = 2*x*cos(y)^2','y(0) = pi/4')

ans= atan(x^2+1)

>>soln_3 = dsolve('Dy = 3*y + exp(2*x)',' y(0) = 3')

ans= -exp(2*x)+4*exp(3*x)

2.4非线性方程式的实根

要求任一方程式的根有三步骤:

先定义方程式。要注意必须将方程式安排成 f(x)=0 的形态,例如一方程式为sin(x)=3,

则该方程式应表示为 f(x)=sin(x)-3。可以 m-file 定义方程式。

代入适当范围的 x, y(x) 值,将该函数的分布图画出,藉以了解该方程式的「长相」。

由图中决定y(x)在何处附近(x0)与 x 轴相交,以fzero的语法fzero('function',x0) 即可求出在 x0附近的根,其中 function 是先前已定义的函数名称。如果从函数分布图看出根不只一个,则须再代入另一个在根附近的 x0,再求出下一个根。

以下分别介绍几数个方程式,来说明如何求解它们的根。

例一、方程式为

sin(x)=0

我们知道上式的根有 ,求根方式如下:

>> r=fzero('sin',3) % 因为sin(x)是内建函数,其名称为sin,因此无须定义它,选择 x=3 附近求根

r=3.1416

>> r=fzero('sin',6) % 选择 x=6 附近求根

r = 6.2832

例二、方程式为MATLAB 内建函数 humps,我们不须要知道这个方程式的形态为何,不过我们可以将它划出来,再找出根的位置。求根方式如下:

>> x=linspace(-2,3);

>> y=humps(x);

>> plot(x,y), grid % 由图中可看出在0和1附近有二个根

>> r=fzero('humps',1.2)

r = 1.2995

例三、方程式为y=x.^3-2*x-5

这个方程式其实是个多项式,我们说明除了用 roots 函数找出它的根外,也可以用这节介绍的方法求根,注意二者的解法及结果有所不同。求根方式如下:

% m-function, f_1.m

function y=f_1(x) % 定义 f_1.m 函数

y=x.^3-2*x-5;

>> x=linspace(-2,3);

>> y=f_1(x);

>> plot(x,y), grid % 由图中可看出在2和-1附近有二个根

>> r=fzero('f_

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top