2012,让工作更智能
返工。
图3: 全面的设计到制造流程支持,能够确保高产量、高产品可靠性和低生产成本。
一旦设计通过智能化接口,如ODB++,进入制造流程,制造商可以利用软件进行生产线建模,并优化其利用。在生产线运行时,软件将持续监控零件按时交付、机器停工以及产品可追溯性等问题。即使发生质量缺陷,也可以确保跟踪并突显低于可接受故障率的设备或流程。
技术策略4:
复杂性管理
对于击败竞争对手的差异化产品,公司必须利用最新和最先进的技术,将更多功能压缩到更小空间内,同时仍能满足积极的市场时机,这在2012年将变得更为重要。集成电路技术在高密度、高速度、在更小的空间中更多的针脚、和更高的功耗等方面持续提高。PCB(印刷电路板)制造技术,如HDI/微孔技术,可以增加密度,但设计也更加复杂。面对这种不断提高的复杂性,我们该如何保持并提高设计师的生产力呢?答案是同样增加设计工具的功能。
例如:不久前,一个典型的设计可能包含一些必须遵守长度和邻近规则的高速网络。这些网络可由设计师轻松管理。现在,大读数设计都拥有超过50%的高速网络,甚至有些高达90%。另外一个例子是BGA针数和密度的增加。这将成为PCB扇出时的一个挑战。这类情况提出了一个复杂性问题,没有先进的设计工具,将导致生产力严重下降,上市时间显著延长。
策略优势
可靠性至关重要。
多年来关键任务应用取决于Rogers的微波材料。Rogers的军用级层压板能经受时间和温度的考验而保持稳定一致的性能,这对航空和国防应用而言是至关重要的。
Rogers微波材料的稳定性能提供了大多数关键任务应用所需的高性能和高可靠性。你能承受减少材料的应用吗?
罗杰斯公司
先进电路材料
图4: 遵循规则的自动高速互连路由来满足性能目标
如果我们查看增加高速网络内容的第一个示例,现存的工具有助于设计师遵守所有的延迟和信号完整性规则。工程师在约束条款中设置这些规则,然后CAD设计师按规定路线发送个体互联或总线结构,自动调整高速网络,然后匹配最低/最高限制的长度,以及匹配差异化配对等网络。这样的任务显然是无法靠手动完成的。
技术策略5:
跨学科合作
产品研发和交付需要跨学科合作。在电子领域,我们拥有集成电路、封装、FPGA、RF、模拟和数字化方面的专家;而在机械领域,我们拥有设计外壳和执行CAE分析的工程师;我们拥有采购、供应链和制造人员;我们拥有嵌入式软件研发。所有这些都需要在开发过程中有效合作。过去是通过纸张和电子邮件进行,现在主要通过电子媒介,但团队成员之间的大量数据转存依然存在问题。如何有效地确定发生了何种改变,在你的领域内该如何应对,以及你实际采用了何种控制?此类问题在不久的将来必须得到处理。
实际上,大多数交互是一种协商。例如,如果一名机械工程师发现PCB上的一个组件将会干涉物理产品外壳,则该工程师可以提议更换该组件的位置。这将采取一种渐进(仅在更换时)提议的形式传达给PCB设计师——不同于大量数据转存,PCB设计师必须经过排序来确定提议。最近渐进式变化性能已经由Mentor Graphics、PTC和用户发展成为标准(“EDMD”),并获得了ProSTEP的批准。
该提议将以图形的形式展示给PCB设计师,后者将根据PCB的实际情况接受、拒绝或提出一个更适合此PCB的提议。协商过程将持续到达成一致为止,届时机械和电气数据库都将进行更新。 这个完全电子化的合作仅仅是目前许多实际操作的示例之一。
技术策略6:
知识产权(IP)管理
最后一流电子公司确定未来成功的关键在于他们的工作进程和数据库的管理。
设计团队成员,无论位于本地还是分散在世界各地,都需要创建一个有效的权限,并严格管理公司认为最重要的资产。公司数据库管理员将合格组件的信息输入经过批准的管理基础设施内,可由设计师进行评估。预先设计的全部或部分PCB可以增加到库中,便于日后项目的重新使用。
随着PCB设计的进展,团队创建了原理图、约束和PCB布局数据。该工作进程数据管理非常复杂,需要专门创建用于管理电子版知识产权(IP)的基础设施系统。不同团队成员编辑的数据将面临版本管理和同步化的问题。公司可以聘用服务机构来设计部分产品,并希望仅共享部分IP。这就是排除使用标准PLM系统的复杂性(图5)。也就是说,随着产品的成熟开发,最终的设计数据必须上传到公司的PLM、ERP等系统内,进行生命周期管理。因此,ECAD供应商必须不仅提供PCB特别IP管理,而且要提供与企业基础设施系统对接的支持标准。
图5: 电子产品IP的管理极其复杂,需要ECAD的专业软件。标准的PLM系统无法保持内部关系和同步
2012 相关文章:
- 讨论DSP系统中延迟电池寿命的关键--DC/DC稳压器(04-13)
- 基于MSP430F2012和nRF24L01低功耗RFID定位设计方案(03-29)
- 世平集团推出Atmel和NXP智能无钥匙进入方案(11-23)
- 基于CMOS振荡器技术的硅频率控制(10-29)
- 从头到尾了解混合信号单片高集成度系统(SOC)设计(1)(08-21)
- 12位串行A/D转换器MAX187的应用(10-06)