基于RFID高速公路车辆测速定位方案
摘 要:针对现有高速公路管理系统无法对车辆进行实时管理的现状,提出一种对高速公路上车辆进行实时测速及定位的方法。该方法基于射频识别(RFID)技术,通过分析构建移动车辆的定位模型,利用谱估计方法对其多普勒频移进行测量,并针对模型求解中存在的非线性特性,采用牛顿迭代法计算车辆的实时速度及相对坐标以达到测量车速及确定车辆实时位置的目的。仿真实验结果表明,该方法具有运算量小、精度高、实施简单的特点。
1 概述
射频识别(Radio Frequency Identification, RFID)是一项非接触式自动识别技术,具有信息量大、抗干扰强、操作快捷等许多优点。特别是RFID 技术在高速运动物体识别、多目标识别和非接触识别等方面的优势,使其在很多领域都具有巨大的发展潜力和广泛的应用前景。
高速公路作为国家的重要战略资源,不仅提高运输效率,而且还能减少车辆损耗,其优越性十分突出。但在安全方面,我国的高速公路却表现出了较高的事故率和伤亡率。相关研究表明,通过合理控制机动车辆的车速及安全车距,可以有效保障高速公路的交通安全和畅通,预防和减少交通事故。
但我国高速公路管理系统中现有的一些交通检测技术,其主要作用是检测道路流量以及为超速罚款提供参考依据,而目前被推广的GPS 定位系统,无法对速度进行实时测量,且其定位精度有限,亦不能实时跟踪车辆。因此,我国在高速公路安全管理及监控这一领域还存在较大的空白。多普勒效应在近代科学中有着广泛的应用。它可用于测量飞机时速、观测人造卫星运行情况、确定星体运行速度、测量视网膜血管内血流速度等。最大多普勒频移还是无线通信中用于优化自适应接收机的重要参数,导频信道测量、切换判决和功率控制等自适应优化算法都依赖于对它的有效估计。
本文基于RFID 技术,通过对由车辆移动所产生的多普勒频移进行实时估计,提出一种高速公路车辆实时测速及定位方法。
2 算法模型
结合高速公路的实际情况,本模型采用无源、只读射频卡,由于本身不需要电源和电池,解决了高速公路无电源问题。同时,无源射频卡不需要维护,且使用寿命很长,节省了大量的人力资源。车载阅读器通过发射激活信号并从无源应答器中接收射频信息来确定当前位置。为取得较远的感应距离,车载阅读器应工作在UHF 频段内,其识别距离可以达到十几米,足以满足当前高速公路的设计要求。
2.1 射频卡识别码设置
将射频卡等距设置在高速公路的隔离带或左、右路肩处。每个无源射频卡应具有唯一的射频识别码,该射频识别码包括高速公路的识别号码、车道数目以及路带标识(即表明所处位置为左右路肩或隔离带),并依次设置顺序号码,以便能够表征其地理位置及相应顺序。此外,在ID 号码中还可以包含高速公路的相应标号、高速公路的车道数目等编码。具体设置如图1 所示。
图1 射频标识码设置
2.2 数学模型
由于定向天线通信距离远,覆盖范围小,目标密度大,频率利用率高且所受干扰小,因此将阅读器天线设定为定向天线,只能接收来自路肩或隔离带一侧的射频信号。图2 给出了阅读器接收来自路肩一侧射频卡信息的模型。车道及路肩之间用实线隔开,圆形代表车载阅读器,矩形代表在路肩等距铺设的射频卡。设一车载阅读器正沿着车道2 正向行驶。
某一时刻,接收到来自射频卡1,2,…,N 的信号。图中v 表示车辆行驶速度, 1 2 , , , N θ θ ??θ 为车辆相对射频卡1,2,…,N 的径向方向与车辆行驶方向的夹角,m 为两射频卡间的距离,m1,m2,…,mN 为射频卡1,2,…,N 同车辆行驶方向法线间的距离,d 为车辆到射频卡垂直距离,dr 为车道宽度,dl 为路肩宽度, 1 2 d , d , , dN f f ?? f 为车辆相对射频卡1,2,…,N 的多普勒频移。
图2 数学模型
根据几何关系,可以得到:
同时,在RFID 系统中,射频卡本身不发射电磁波,只对来自阅读器的电磁波进行反射。因此,根据接收信号相对于发射信号的多普勒频偏fd 关系,还可得到:
联立式(1)、式(2),可以得到2N 个方程,而未知数个数为2N+2 个。实际上,当2 个射频卡位于车辆行驶方向法线两侧时,其频偏值必然为一正一负,因此,当检测到2 个标识码相邻的射频卡p 和射频卡p+1、fdp 和fd(p+1)符号相反时,可知有:
此外,若设在阅读器接收到第N 个射频卡时开始执行定位算法,则可近似认为阅读器与射频卡N 之间的距离为最大通信距离R,有:
联立式(1)、式(2),则可求得车辆行驶速度以及与N 个射频卡的相对位置,进而实现对车辆当前位置的测定。在已知量中,m、R 是系统设定的,而N 个
- 敢当工业4.0得力助手,RFID有啥本事(03-01)
- 基于ISO14443A协议的RFID芯片模拟前端设计(08-04)
- RFID系统中耦合器定向性的提高方法(08-31)
- 混合域示波器在嵌入式射频系统设计中的应用(06-20)
- 内置串行接口的铁电随机存储器(FRAM) RFID简介(09-21)
- 正确构建RFID应用系统的10个步骤(04-05)