不需要耦合电感器的 Hartley 振荡器
检查一个传统的电路就会注意到它的标志:一个带抽头的电感器,它用于确定振荡频率,并提供维持振荡的反馈。尽管可以方便地计算出某个额定频率所需的总感量,但要找到耦合系数k仍有很高技术难度,并且可能需要进行实验优化,也归为“分割试验”法。本设计实例给出了另一种替代等效电路,能在建立原型电路以前做出电路模型。
图1是Hartley振荡器的等效调谐电路,以及一个18MHz振荡器的元件值。对于等效电路,互感的公式为:LA=-LM;LB=L2-LA=L2+LM和LC=L1-LA=L1+LM。等效电路的其它公式如下:
和
不幸的是,实际等效电路需要一个负电感LA。但是,对于接近谐振频率f0的频率,可以用一只电容器代替负电感器(图1c),即用CA替换LA。注意等效电路忽略了寄生绕组的电阻与电容。
图2为采用等效电路的一个振荡器和输出缓冲器。此电路性能一般与初始Spice仿真的预期相同。在测试期间,需要修改多个元件的值,并重复进行多次的Spice分析才能完成最终设计。
振荡器的振荡回路包括LB、LC、C4和C5,以及分压器C6、C7和C8 产生的电容(大约6pF),该电容包括Q1和Q2的输入电容和一些杂散电容。振荡回路总电容为66pF,接近计算值67pF。连接到调谐电路上的电容器采用具有NP0温度系数的陶瓷电介质型电容器。
电感器LB和LC采用空心线圈,它们在安装时轴线互成直角,以尽量减小寄生耦合。但是,振动会影响它们的电感量,在最终设计中,两个电感器都应包含电介质芯或环形芯上的绕组,因为环形线圈电感的温度系数适合于预期的应用。
参考文献1中的信息为两种电感器提供了基本设计,调整匝的间距就可使振荡器调谐到精确的18MHz。对于更严格的设计,可以在安装前测量电感器,但寄生效应可能需要对电感器做某些调整。
电容分压器C6、C7和C8为Q1和Q2施加适宜的信号电平。由于振荡回路“看”到的分压器有效电容总共只有6pF,因此,当设计要求一种可调振荡器时,可以用一只可变电容器代替C4和C5组成其余的60 pF。在本例中,如果振荡器需要大于±2MHz 的调谐范围,则由Q3及其相应元件构成的输出级可能需要作修改,以提供更高的带宽。
电容器C3将Q1的Gate2自举到其源极,提供额外增益,并使Q1 Gate1的输入电容减少到已很低的 2.1pF以下(参考文献2)。直流电阻小于2Ω的 8.3mH电感器L2连接到Q1的源极,在18 MHz 时表现出相对的高阻抗,并通过R3为Q1的源极提供一个对地直流路径。在18 MHz 时,L2的阻抗大约为940Ω的感抗与大约3.5 kΩ电阻并联组成,从而得到了一个极低Q值的扼流圈。假设其电感和感抗接近L2的原值,则可以为L2挑选一个实际尺寸较小的电感器。电感器L1的特性不太重要,但它应有4 ~ 6的低Q值,以及不大于5Ω的直流电阻值。在满足这些要求下,就能为L1选择一个标准值的扼流圈。
源跟随器Q2用于驱动输出级,它采用一种pi型匹配网络,在Q3集电极将50Ω输出负载转换为285Ω。Q2的Gate2自举该级输出电压的一半,就可增加源跟随器的增益和动态范围,并减小其输入电容。
可以用电位器R15调整电路的输出大小,在50Ω的负载上可以从约0.9VP_P调至1.5VP_P。在恒定的23℃左右室温下,频率保持稳定,即使输出上没有负载,控制输出的电路也能保持稳定。对于固定频率应用,输出电路的负载Q为4,提供了适当的带宽,减少了频率小幅变化时对输出电路重新调整的需求。
为使输出电平达到最大安全程度,在输出端连接一个50Ω负载,然后调整输出至1.5VP_P。从50Ω到无负载的所有情况下,Q1上的漏源电压都会保持在一个安全水平,即使输出电压随着负载电阻提高而增加。为避免超过Q1最大12V漏源额定电压值,不要在50Ω负载上将输出电压设为大于1.5V。注意齐纳二极管D1降低了Q1的漏极电压,以提供额外的安全裕度。
在以前的一个设计实例中,通过加在Q1 Gate2上的一个控制电压,用一只运算放大器和一个二极管整流电路设定了振荡器的增益(参考文献3)。在本设计中,一个简单的无源电路就完成了相同的功能。Q3集电极的一部分信号驱动一个由D2、D3、C20 和C21构成的倍压器。倍压器产生的一部分负电压驱动R18和C19的节点,即控制电压节点,它也从可变电阻器R15 ~ R17接收一个正电压,产生的电压设定输出信号电平。在启动时,Q1的 Gate 2上只有正电压,而Q1的最大增益很容易使振荡器起振。当输出达到稳定状态时,控制电压下降,使振荡维持在由输出电平控制所确定的信号水平。
- 解析几种有效的开关电源电磁干扰的抑制措施(01-22)
- 线性光电耦合器在开关电源中的应用(01-15)
- 光耦合器和光隔离器(05-16)
- 交叉耦合门防止推挽驱动器交叠(07-01)
- 基于LT3573隔离型反激式DC-DC开关电源的设计(05-09)
- 光电耦合器在并口长线传输中的应用(05-26)