基于LT3573隔离型反激式DC-DC开关电源的设计
自从1994年单片开关电源问世以来,为开关电源的推广和普及创造了条件。开关电源的应用涉及到各种电子电器设备领域,如程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。各种新技术、新工艺和新器件如雨后春笋般,不断问世,使得开关电源的应用日益普及。开关电源高频化是其发展的方向,从最初的20kHz提高到现在的几百kHz甚至几兆赫兹,高频化带来开关电源的小型化。目前,开关电源正朝着高效节能、安全环保、小型化、轻便化方向发展。
2 LT3573简介
LT3573是一种单片开关稳压器件,专为隔离型反击式拓扑结构而设计。在隔离型反激拓扑结构中,变压器原边电路需要时时感知到副边输出电压的变化信息,以便维持输出电压稳定。在以往的电路拓扑结构中,常常采用光电耦合器件或者另外增加变压器绕组,来得到输出电压反馈信息。光电耦合器件存在的问题是:①耗费输出功率;②成本增加,电路结构便得复杂;③有限的动态响应、器件非线性、老化等,都会带来麻烦。
另外若新增变压器或变压器绕组,无形就会使变压器物理尺寸变大,成本增加,其动态响应也不怎么样好。而LT3573则无需外接光电耦合器件或第三绕组,其特有的内置反激误差放大器,在二次侧绕组电流为零时,反激误差放大器开始取样输出电压信息,直接从变压器原边的反激电压波形检测输出电压的变化信息,自动维持输出电压的稳定性,这也是此IC设计的亮点之所在。反激电压由于RFB和Q2的作用,变换成电流,这个电流几乎全部流过电阻RREF,形成反馈电压,进入反激误差放大器,并与其1.22V的参考电压进行比较,以便后续电路能调整开关管的占空比,达到稳定输出电压的目的,如图1所示。
图1 LT3573内部拓扑结构框图 一个1.25A 、60V的NPN型功率开关管以及全部控制逻辑单元都集成到一个16引脚MSOP封装的LT3573内部。极大地简化了该集成块应用的外围电路设计工作,在3V~40V的输入电压范围内工作,最大输出功率值可达7W。可应用于需要隔离型电源的众多领域,比如工业、医疗、数据通信、汽车应用、低功率PoE和VoIP电话接口等。 LT3573工作于边界模式,与对等的连续传导模式设计相比较,边界模式工作允许使用较小的变压器。 3 钳位电路的设计 变压器漏感Lsl(无论原边还是副边),如图2所示,会在原边引起一个电压尖峰出现。当输出开关关闭后,这个尖峰随着更高的负载电流越来越尖,这就需要选择能量吸收网络消耗掉漏感中储存的能量。在大多数情况下,需要用缓冲电路,以避免过压击穿输出开关节点。所以,变压器漏感应尽量减少。 选择吸收网络钳位反激开关电压尖峰。由于开关变压器的漏感产生的电压尖峰,反激电压可由下式计算: (1) 其中:VF-变压器二次侧整流二极管D2正向压降 ;
|
- 新型灌封式6A至12A DC-DC μModule稳压器系列(11-19)
- DC-DC开关变换器中混沌现象的研究综述(11-27)
- 数码相机电源电路设计及DC/DC变换器选择(01-22)
- 产生双极性输出的无变压器 DC/DC 变换器(01-23)
- 改进型全桥移相ZVS-PWMDC/DC变换器(01-23)
- 为DC/DC转换器选择正确的电感器与电容器(01-02)