移相法用于SSB信号的调制
与标准幅度调制相比,单边带调制(SSB)对于频谱和输出功率的利用率更高。尽管很少用于数据传送,SSB仍广泛地用于HF和VHF低端的语音通讯。双边带调制信号包含有两个完全相同的基带信号,即上、下边带。由于两个边带含的信息相同,因而从信息传输角度考虑,传送一个边带同样可以达到信息传输的目的。单边带调制,就是通过某种办法,只传送一个边带的调制方法。
下边带SSB信号的时域表示式为:
Sm(t)=m(t)cosωct+m''(t)sinωct (1)
上边带SSB信号的表示式:
Sm(t)=m(t)cosωct-m''(t)sinωct(2)
式中,m''(t)是m(t)的希尔伯特变换。
单边带信号的产生,通常采用滤波法和相移法两种。
所谓滤波法,是对双边带信号利用网络滤出单边带信号,因为,一般的m(t)具有丰富的低频成分,因而要求滤波器的截止特性极为陡峭才行。这就给实际制作带来困难,尤其是截止特性陡峭的高频网络更难制作。因此,在实际中,往往采用多次频移及多次滤滤的办法来实现,如图1所示。
图中,ωs1ωs2,而且滤波器I一般工作在较低频率上,这样做便于设计一个较为满意的单边带滤波器。倘若m(t)不包含显著的低频成分,则这种滤波法是行之有效的,例如,一般话音信号并不包含丰富的非常低的频率成分。但是,如果是数字信号,则它的低频成分极为丰富,故在采用滤波法时,必须先采用某种技术(比如,部分响应技术)改变原信号的频谱结构。
这种产生SSB的方法的特点是:首先对载波进行调制,而后滤掉不需要的边带和载波。这种方法通常被认为是低效率的,因为它将大约2/3的功率消耗于滤波器(当然,因为滤波器不是总被安装于输出级,所以系统不一定会浪费掉2/3的发射功率。)
所谓相移法,是模仿式(1)运算关系的一种实现方法。这种方法的原理示于图2.这里,关键在于制作一个相移网络。由于在全频率内相移-π/2的要求很难达到,故在实际中往往由宽频带(有限带宽的)相移网络来替代。
相移法产生SSB信号的一种具体方法
图3所示电路利用一个集成了所有必要功能单元的IC与宽带网络、低电压运放相配合,可以产生35MHz至80MHz的SSB信号。图中所有IC均工作于3V±10%.
各部分的组成和作用分别介绍如下:
MAX2452芯片(IC1)
如果产生SSB信号采用移相(代数)法。那么需要用这两调制器(混频器)产生怕需的边带并抑制掉不需要的载波和其余的边带。两个调制器分别被用作QAM(正交振幅调制)中的同相和正交调制,二者均包含于IC1中。该电路具有以下优点:
低成本,低功耗。
输出信号(35MHz至80MHz)覆盖了4m和6m业余无线波段。
用户可通过反转两对线的连接而在上/下边带间转换(而不是改变滤波器)
不需要滤波器。
一片IC1内包含了所需的振荡器、两个调制器和一个求和放大器。
该电路不需要滤波器来抑制载波和边带频率,因为调制过程已包含了频率甄别功能。举例来说,如果载波信号sinωct而调制信号为sinωMt(不考虑信号幅度)。调制过程(混频)实际就是将载波和调制信号相乘,如下所示:
[sinωMtsinωct]=0.5cos(ωM-ωc)t-0.5cos(ωM+ωc)t
上述两路信号移相90°后则变成为余弦形式:
sin(ωct+90°)=cos(ωct),sin(ωMt+90°)=cosωMt
将移相90°后的两路信号送入另外一个调制器相乘得到:
[cosωMt][cosωct]=0.5cos(ωM-ωc)t+0.5cos(ωM+ωc)t
请注意,下边带信号,也就是上式中含cos(ωM-ωc)t的项,经两路信号求和后得到加强而产生IC1的输出。上边带信号,也就是含cos(ωM+ωc)t的项,在两路信号相加后被互相低消。
IC1对于不需要的载波和边带的抑制率比为-35dB,比期望值低5dB,但在输出功率不高于5W时并无明显差。该抑制率在一定程度上与没有使用的调制器反相输入端的电容(C7和C8)有关。输出级(未表示出)可以是一个单管缓冲器,一个推挽功率放大器,或根据实际要求来选择。
RC相移网络
RC相移网络提供低频-π/2相移,采用RC相移网络主要是为简化电路,而不是减少元件。RC相移网络由R、C1、C2、C3、C4、C5、C6组成,其中R=12K±10%,C10.044μF,C2=0.033μF,C3=0.02μF,C4=0.01μF,C5=5600pF,C6=100nF,由R、C1、C2、C3、C4、C5、C6组成了复合的π型RC低频移相器,它可简化成双输入双输出网络结构。相移大小约为-π/2。该网络利用5%精度的元件可获得300Hz至3500Hz的响应,相位误差1°,增益误差0.2dB。
从信号的流程上来看,由话简输出的声音信号经U1放大100倍后,分成两路到达U2-1和U2-2,U2-1实际上是一个跟随器,U2-2起着一
- 高速DAC AD9712B/AD9713B的原理和应用(11-30)
- AD698型LVDT信号调理电路的原理与应用(01-17)
- 毫瓦级功率实现千兆赫兹信号驱动的模拟解决方案(05-10)
- 如何设计可支持差分和单端信号的便携式产品音频接口(09-14)
- 为多路、多信号的快速扫描测量构建适当的数据采集系统(09-20)
- D类功放中的∑-△调制器分析与设计(11-27)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...