微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 采用跨导运算放大器的可变带宽低通滤波器设计

采用跨导运算放大器的可变带宽低通滤波器设计

时间:09-26 来源:互联网 点击:

线性度和带宽是跨导运算放大器设计考虑的两个主要方面。带宽的大小和跨导值成正比,但增大跨导值会使芯片功耗变大,对于相同的传输函数,增大跨导值时,电容值也需要相应的增大,从而增大了芯片面积。同时跨导值减小时,电容值也要减小,这对版图匹配造成影响。

本文采用经典的交叉耦合差动式COMS跨导器,其I/V传输特性有理想的线性关系。图4中,M1和M2偏置电流为I;M3和M4偏置电流为nI。电路设计中,M1~M4有相同的沟道长度L,M3,M4的沟道宽度W=nL。设Y1=i1/I,Y2=i2/I,X=Vid/Vb,则输出电流Io=i1+i2的归一化表达式为:

可以看出,n值增大时,β值减小,式(4)中根号内的βX2项减小,跨导器线性度得到改善。n值越大,信号电流分量在M3,M4中所占比例越小,传输特性越接近理想状态。

3 可编程电路设计

如图5所示,OTA为跨导运算放大器,其跨导值可通过偏置电流(图6所示电路)来调节。一般采用可变电阻完成,但传统R-2R可变电阻结构需要大量的控制开关,增加了电路面积,并产生开关操作的功耗。本文采用一种新型微功耗硬件可编程变阻电路,如图7所示,电路基于三态门概念,端口除高、低电平,用悬空状态产生第三种状态,实现了27级变阻电路,总电阻表示为:

式中:表示第m个三态输入产生的第n个进制状态码;Rm为第m个三态输入驱动的权电阻(m=1,2,3;n=1,2)。

可编程电阻(RDAC)的输出偏置电流:

又知跨导:

可见,在电源电压确定的情况下,OTA的跨导值与输入数据Rx成平方根倒数关系,跨导值随着输入数据的增大而减小。通过改写输入数据RDAC的值,即可实现26种(全零状态禁用)变化电阻,达到改变偏置电流,产生跨导值的变化,最终实现滤波器带宽的调节。
4 仿真结果

上述电路,采用1.8 V电源,TSMC 0.18μmCMOS工艺库仿真。图8为该滤波器-3 dB带宽26 MHz时仿真结果,该滤波器50 MHz带阻抑制为-40.49 dB,带内波纹小于0.5 dB,功耗约为21 mW,满足设计要求。图9为滤波器带宽调节为14 MHz的频响曲线。

5 结语

设计中,采用跨导运算放大器实现了一种可变带宽低通滤波器,最高带宽为26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,在低中频结构接收器中,该频率相对较高。同时滤波器带宽可由外部可编程电路调节变化,与普通模拟滤波器电路相比,本文设计电路具有电路简单,易于高集成,便于后期维护等优点,是OTA电路设计的未来发展趋势,有着广泛的应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top